Inferring the socioeconomic status of social media users based on behaviour and language

Vasileios Lampos, Nikolaos Aletras, Jens K. Geyti, Bin Zou, Ingemar Johansson Cox

30 Citationer (Scopus)

Abstract

This paper presents a method to classify social media users based on their socioeconomic status. Our experiments are conducted on a curated set of Twitter profiles, where each user is represented by the posted text, topics of discussion, interactive behaviour and estimated impact on the microblogging platform. Initially, we formulate a 3-way classification task, where users are classified as having an upper, middle or lower socioeconomic status. A nonlinear, generative learning approach using a composite Gaussian Process kernel provides significantly better classification accuracy (75%) than a competitive linear alternative. By turning this task into a binary classification – upper vs. medium and lower class – the proposed classifier reaches an accuracy of 82%.

OriginalsprogEngelsk
TitelAdvances in Information Retrieval : 38th European Conference on IR Research, ECIR 2016, Padua, Italy, March 20–23, 2016. Proceedings
RedaktørerNicola Ferro, Fabio Crestani, Marie-Francine Moens, Josiane Mothe, Fabrizio Silvestri, Giorgio Maria Di Nunzio, Claudia Hauff, Gianmaria Silvello
Antal sider7
ForlagSpringer
Publikationsdato2016
Sider689-695
ISBN (Trykt)978-3-319-30671-1
ISBN (Elektronisk)978-3-319-30671-1
DOI
StatusUdgivet - 2016
Begivenhed38th European Conference on Information Retrieval - Padua, Italien
Varighed: 20 mar. 201623 mar. 2016

Konference

Konference38th European Conference on Information Retrieval
Land/OmrådeItalien
ByPadua
Periode20/03/201623/03/2016
NavnLecture notes in computer science
Vol/bind9626
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Inferring the socioeconomic status of social media users based on behaviour and language'. Sammen danner de et unikt fingeraftryk.

Citationsformater