TY - JOUR
T1 - Importance of Attenuation Correction (AC) for Small Animal PET Imaging
AU - El Ali, Henrik H.
AU - Bodholdt, Rasmus Poul
AU - Jørgensen, Jesper Tranekjær
AU - Myschetzky, Rebecca Sue Main
AU - Kjær, Andreas
PY - 2012/10/9
Y1 - 2012/10/9
N2 - The purpose of this study was to investigate whether a correction for annihilation photon attenuation in small objects such as mice is necessary. The attenuation recovery for specific organs and subcutaneous tumors was investigated. A comparison between different attenuation correction methods was performed. Methods: Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7) were scanned consecutively in small animal PET and CT scanners (MicroPETTM Focus 120 and ImTek’s MicroCATTM II). CT-based AC, PET-based AC and uniform AC methods were compared. Results: The activity concentration in the same organ with and without AC revealed an overall attenuation recovery of 9–21% for MAP reconstructed images, i.e., SUV without AC could underestimate the true activity at this level. For subcutaneous tumors, the attenuation was 13 ± 4% (9–17%), for kidneys 20 ± 1% (19–21%), and for bladder 18 ± 3% (15–21%). The FBP reconstructed images showed almost the same attenuation levels as the MAP reconstructed images for all organs. Conclusions: The annihilation photons are suffering attenuation even in small subjects. Both PET-based and CT-based are adequate as AC methods. The amplitude of the AC recovery could be overestimated using the uniform map. Therefore, application of a global attenuation factor on PET data might not be accurate for attenuation correction.
AB - The purpose of this study was to investigate whether a correction for annihilation photon attenuation in small objects such as mice is necessary. The attenuation recovery for specific organs and subcutaneous tumors was investigated. A comparison between different attenuation correction methods was performed. Methods: Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7) were scanned consecutively in small animal PET and CT scanners (MicroPETTM Focus 120 and ImTek’s MicroCATTM II). CT-based AC, PET-based AC and uniform AC methods were compared. Results: The activity concentration in the same organ with and without AC revealed an overall attenuation recovery of 9–21% for MAP reconstructed images, i.e., SUV without AC could underestimate the true activity at this level. For subcutaneous tumors, the attenuation was 13 ± 4% (9–17%), for kidneys 20 ± 1% (19–21%), and for bladder 18 ± 3% (15–21%). The FBP reconstructed images showed almost the same attenuation levels as the MAP reconstructed images for all organs. Conclusions: The annihilation photons are suffering attenuation even in small subjects. Both PET-based and CT-based are adequate as AC methods. The amplitude of the AC recovery could be overestimated using the uniform map. Therefore, application of a global attenuation factor on PET data might not be accurate for attenuation correction.
KW - Faculty of Health and Medical Sciences
KW - attenuation correction
KW - small animal
KW - PET imaging
KW - MicroPET
KW - molecular imaging
U2 - 10.3390/diagnostics2040042
DO - 10.3390/diagnostics2040042
M3 - Journal article
C2 - 26859397
SN - 2075-4418
VL - 2
SP - 42
EP - 51
JO - Diagnostics
JF - Diagnostics
IS - 4
ER -