Abstract
The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early, intermediate and late passages using a custom DNA microarray platform (NeuroStem 2.0 Chip). The microarray data was validated using RT-PCR and virtual SAGE analysis. Our comparative gene expression study identified a limited number of molecular targets potentially involved in the ability of human neonatal foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Cellular & Molecular Biology Letters |
Vol/bind | 16 |
Udgave nummer | 1 |
Sider (fra-til) | 79-88 |
Antal sider | 10 |
ISSN | 1425-8153 |
DOI | |
Status | Udgivet - mar. 2011 |
Emneord
- Det tidligere LIFE
- Human embryonic stem cells
- Feeder cells
- DNA microarray