TY - JOUR
T1 - Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture
AU - Eliasson, Pernilla
AU - Rehn, Matilda
AU - Hammar, Petter
AU - Larsson, Peter
AU - Sirenko, Oksana
AU - Flippin, Lee A
AU - Cammenga, Jörg
AU - Jönsson, Jan-Ingvar
PY - 2010/4
Y1 - 2010/4
N2 - Objective: Recent evidence suggests that hematopoietic stem cells (HSCs) in the bone marrow (BM) are located in areas where the environment is hypoxic. Although previous studies have demonstrated positive effects by hypoxia, its role in HSC maintenance has not been fully elucidated, neither has the molecular mechanisms been delineated. Here, we have investigated the consequence of in vitro incubation of HSCs in hypoxia prior to transplantation and analyzed the role of hypoxia-inducible factor (HIF)-1α. Materials and Methods: HSC and progenitor populations isolated from mouse BM were cultured in 20% or 1% O2, and analyzed for effects on cell cycle, expression of cyclin-dependent kinase inhibitors genes, and reconstituting ability to lethally irradiated mice. The involvement of HIF-1α was studied using methods of protein stabilization and gene silencing. Results: When long-term FLT3-CD34- Lin-Sca-1+c-Kit+ (LSK) cells were cultured in hypoxia, cell numbers were significantly reduced in comparison to normoxia. This was due to a decrease in proliferation and more cells accumulating in G0. Moreover, the proportion of HSCs with long-term engraftment potential was increased. Whereas expression of the cyclin-dependent kinase inhibitor genes p21cip1, p27Kip1, and p57Kip2 increased in LSK cells by hypoxia, only p21cip1 was upregulated in FLT3-CD34-LSK cells. We could demonstrate that expression of p27Kip1 and p57Kip2 was dependent of HIF-1α. Surprisingly, overexpression of constitutively active HIF-1α or treatment with the HIF stabilizer agent FG-4497 led to a reduction in HSC reconstituting ability. Conclusions: Our results imply that hypoxia, in part via HIF-1α, maintains HSCs by decreasing proliferation and favoring quiescence.
AB - Objective: Recent evidence suggests that hematopoietic stem cells (HSCs) in the bone marrow (BM) are located in areas where the environment is hypoxic. Although previous studies have demonstrated positive effects by hypoxia, its role in HSC maintenance has not been fully elucidated, neither has the molecular mechanisms been delineated. Here, we have investigated the consequence of in vitro incubation of HSCs in hypoxia prior to transplantation and analyzed the role of hypoxia-inducible factor (HIF)-1α. Materials and Methods: HSC and progenitor populations isolated from mouse BM were cultured in 20% or 1% O2, and analyzed for effects on cell cycle, expression of cyclin-dependent kinase inhibitors genes, and reconstituting ability to lethally irradiated mice. The involvement of HIF-1α was studied using methods of protein stabilization and gene silencing. Results: When long-term FLT3-CD34- Lin-Sca-1+c-Kit+ (LSK) cells were cultured in hypoxia, cell numbers were significantly reduced in comparison to normoxia. This was due to a decrease in proliferation and more cells accumulating in G0. Moreover, the proportion of HSCs with long-term engraftment potential was increased. Whereas expression of the cyclin-dependent kinase inhibitor genes p21cip1, p27Kip1, and p57Kip2 increased in LSK cells by hypoxia, only p21cip1 was upregulated in FLT3-CD34-LSK cells. We could demonstrate that expression of p27Kip1 and p57Kip2 was dependent of HIF-1α. Surprisingly, overexpression of constitutively active HIF-1α or treatment with the HIF stabilizer agent FG-4497 led to a reduction in HSC reconstituting ability. Conclusions: Our results imply that hypoxia, in part via HIF-1α, maintains HSCs by decreasing proliferation and favoring quiescence.
KW - Animals
KW - Cell Cycle/physiology
KW - Cell Hypoxia
KW - Cell Proliferation
KW - Cells, Cultured
KW - Gene Expression Regulation
KW - Hematopoietic Stem Cells/cytology
KW - Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
KW - Mice
KW - Reverse Transcriptase Polymerase Chain Reaction
U2 - 10.1016/j.exphem.2010.01.005
DO - 10.1016/j.exphem.2010.01.005
M3 - Journal article
C2 - 20138114
SN - 0301-472X
VL - 38
SP - 301-310.e2
JO - Experimental Hematology
JF - Experimental Hematology
IS - 4
ER -