TY - JOUR
T1 - Genetic tools to study complexity of striatal function
AU - Ciriachi, Chiara
AU - Svane-Petersen, David
AU - Rickhag, Mattias
N1 - © 2019 Wiley Periodicals, Inc.
PY - 2019/10
Y1 - 2019/10
N2 - As the main input structure of the basal ganglia (BG), the striatum collects and integrates information from several brain areas and funnels them forward to other BG nuclei. The striatal projection neurons are medium-sized spiny neurons classified in two main subpopulations, based on their neurochemical characterization and projection targets. These subpopulations are segregated into two distinct circuits, the direct and the indirect pathway, which originate in the striatum and interconnect the BG, ultimately reaching their output nuclei. In this review, we discuss current opinions on the striatal circuit and present different strategies to decipher this circuit complexity by utilizing cell ablation, opto- and chemogenetics, tetanus toxin-induced neuronal silencing, and calcium imaging techniques. We also describe genetically encoded biosensors to monitor signaling dynamics in the striatal circuit with high spatial and temporal resolution by targeting both glutamate and dopamine transmission together with downstream signaling effectors. Recent findings revealing transcriptional, functional diversity, and regionally distinct signaling properties of spiny projection neurons argue that refined interrogation will be pertinent for a deeper understanding of this circuit. Moreover, future mapping the G-protein-coupled receptor repertoire in SPNs will potentially enable pathway-specific modulation of SPN activity and provide a novel framework for targeting BG diseases. Overall, these tools will be critical for designing next-generation treatments for BG diseases.
AB - As the main input structure of the basal ganglia (BG), the striatum collects and integrates information from several brain areas and funnels them forward to other BG nuclei. The striatal projection neurons are medium-sized spiny neurons classified in two main subpopulations, based on their neurochemical characterization and projection targets. These subpopulations are segregated into two distinct circuits, the direct and the indirect pathway, which originate in the striatum and interconnect the BG, ultimately reaching their output nuclei. In this review, we discuss current opinions on the striatal circuit and present different strategies to decipher this circuit complexity by utilizing cell ablation, opto- and chemogenetics, tetanus toxin-induced neuronal silencing, and calcium imaging techniques. We also describe genetically encoded biosensors to monitor signaling dynamics in the striatal circuit with high spatial and temporal resolution by targeting both glutamate and dopamine transmission together with downstream signaling effectors. Recent findings revealing transcriptional, functional diversity, and regionally distinct signaling properties of spiny projection neurons argue that refined interrogation will be pertinent for a deeper understanding of this circuit. Moreover, future mapping the G-protein-coupled receptor repertoire in SPNs will potentially enable pathway-specific modulation of SPN activity and provide a novel framework for targeting BG diseases. Overall, these tools will be critical for designing next-generation treatments for BG diseases.
U2 - 10.1002/jnr.24479
DO - 10.1002/jnr.24479
M3 - Review
C2 - 31228300
SN - 0360-4012
VL - 97
SP - 1181
EP - 1193
JO - Journal of Neuroscience Research
JF - Journal of Neuroscience Research
IS - 10
ER -