Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene

Carolin Seuring, Kartik Ayyer, Eleftheria Filippaki, Miriam Barthelmess, Jean-Nicolas Longchamp, Philippe Ringler, Tommaso Pardini, David H Wojtas, Matthew A Coleman, Katerina Dörner, Silje Fuglerud, Greger Hammarin, Birgit Habenstein, Annette E Langkilde, Antoine Loquet, Alke Meents, Roland Riek, Henning Stahlberg, Sébastien Boutet, Mark S HunterJason Koglin, Mengning Liang, Helen M Ginn, Rick P Millane, Matthias Frank, Anton Barty, Henry N Chapman

    21 Citationer (Scopus)
    50 Downloads (Pure)

    Abstract

    Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.

    OriginalsprogEngelsk
    Artikelnummer1836
    TidsskriftNature Communications
    Vol/bind9
    Udgave nummer1
    Antal sider10
    ISSN2041-1723
    DOI
    StatusUdgivet - 1 dec. 2018

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene'. Sammen danner de et unikt fingeraftryk.

    Citationsformater