TY - JOUR
T1 - Dysregulation of FOXG1 by ring chromosome 14
AU - Alosi, Daniela
AU - Klitten, Laura Line
AU - Bak, Mads
AU - Hjalgrim, Helle
AU - Møller, Rikke Steensbjerre
AU - Tommerup, Niels
PY - 2015/4/9
Y1 - 2015/4/9
N2 - In this study we performed molecular characterization of a patient with an extra ring chromosome derived from chromosome 14, with severe intellectual disability, epilepsy, cerebral paresis, tetraplegia, osteoporosis and severe thoraco-lumbal scoliosis. Array CGH analysis did not show any genomic imbalance but conventional karyotyping and FISH analysis revealed the presence of an interstitial 14q12q24.3 deletion and an extra ring chromosome derived from the deleted material. The deletion and ring chromosome breakpoints were identified at base-pair level by mate-pair and Sanger sequencing. Both breakpoints disrupted putative long non-coding RNA genes (TCONS00022561;RP11-148E17.1) of unknown function. However, the proximal breakpoint was 225 kb downstream of the forkhead box G1 gene (FOXG1), within the known regulatory landscape of FOXG1. The patient represents the first case of a r(14) arising from an interstitial excision where the phenotype is compatible with dysregulation of FOXG1. In turn, the phenotypic overlap between the present case, the FOXG1 syndrome and the r(14) syndrome supports that dysregulation of FOXG1 may contribute to the classical r(14)-syndrome, likely mediated by dynamic mosaicism.
AB - In this study we performed molecular characterization of a patient with an extra ring chromosome derived from chromosome 14, with severe intellectual disability, epilepsy, cerebral paresis, tetraplegia, osteoporosis and severe thoraco-lumbal scoliosis. Array CGH analysis did not show any genomic imbalance but conventional karyotyping and FISH analysis revealed the presence of an interstitial 14q12q24.3 deletion and an extra ring chromosome derived from the deleted material. The deletion and ring chromosome breakpoints were identified at base-pair level by mate-pair and Sanger sequencing. Both breakpoints disrupted putative long non-coding RNA genes (TCONS00022561;RP11-148E17.1) of unknown function. However, the proximal breakpoint was 225 kb downstream of the forkhead box G1 gene (FOXG1), within the known regulatory landscape of FOXG1. The patient represents the first case of a r(14) arising from an interstitial excision where the phenotype is compatible with dysregulation of FOXG1. In turn, the phenotypic overlap between the present case, the FOXG1 syndrome and the r(14) syndrome supports that dysregulation of FOXG1 may contribute to the classical r(14)-syndrome, likely mediated by dynamic mosaicism.
U2 - 10.1186/s13039-015-0129-4
DO - 10.1186/s13039-015-0129-4
M3 - Journal article
C2 - 25901181
SN - 1755-8166
VL - 8
JO - Molecular Cytogenetics
JF - Molecular Cytogenetics
IS - 24
M1 - 24
ER -