Abstract
Emphysema is part of chronic obstructive pulmonary disease, a leading cause of mortality worldwide. Visual assessment of emphysema presence is useful for identifying subjects at risk and for research into disease development. We train a machine learning method to predict emphysema from visually assessed expert labels. We use a multiple instance learning approach to predict both scan-level and region-level emphysema presence. We evaluate performance on 600 low-dose CT scans from the Danish Lung Cancer Screening Study and achieve an AUC of 0.82 for scan-level prediction and AUCs between 0.76 and 0.88 for region-level prediction.
Originalsprog | Engelsk |
---|---|
Titel | 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018 |
Forlag | IEEE |
Publikationsdato | 23 maj 2018 |
Sider | 510-513 |
ISBN (Elektronisk) | 9781538636367 |
DOI | |
Status | Udgivet - 23 maj 2018 |
Begivenhed | 15th IEEE International Symposium on Biomedical Imaging, ISBI 2018 - Washington, USA Varighed: 4 apr. 2018 → 7 apr. 2018 |
Konference
Konference | 15th IEEE International Symposium on Biomedical Imaging, ISBI 2018 |
---|---|
Land/Område | USA |
By | Washington |
Periode | 04/04/2018 → 07/04/2018 |