Automatic Segmentation of the Articular Cartilage in Knee MRI Using a Hierarchical Multi-class Classification Scheme

Jenny Maria Folkesson, Erik Bjørnager Dam, Ole Fogh Olsen, Paola C. Pettersen, Claus Christiansen

35 Citationer (Scopus)

Abstract

Osteoarthritis is characterized by the degeneration of the articular cartilage in joints. We have developed a fully automatic method for segmenting the articular cartilage in knee MR scans based on supervised learning. A binary approximate kNN classifier first roughly separates cartilage from background voxels, then a three-class classifier assigns one of three classes to each voxel that is classified as cartilage by the binary classifier. The resulting sensitivity and specificity are 90.0% and 99.8% respectively for the medial cartilage compartments. We show that an accurate automatic cartilage segmentation is achievable using a low-field MR scanner.
OriginalsprogEngelsk
TitelMedical Image Computing and Computer-Assisted Intervention – MICCAI
Forlag<Forlag uden navn>
Publikationsdato2005
Sider327-334
ISBN (Trykt)978-3-540-29327-9
DOI
StatusUdgivet - 2005
Udgivet eksterntJa
Begivenhed8th International Conference in Medical Image Computing and Computer-Assisted Intervention – MICCAI - Palm Springs, CA, USA
Varighed: 29 nov. 2010 → …
Konferencens nummer: 8

Konference

Konference8th International Conference in Medical Image Computing and Computer-Assisted Intervention – MICCAI
Nummer8
Land/OmrådeUSA
ByPalm Springs, CA
Periode29/11/2010 → …
NavnLecture notes in computer science
Vol/bind3749/2005
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Automatic Segmentation of the Articular Cartilage in Knee MRI Using a Hierarchical Multi-class Classification Scheme'. Sammen danner de et unikt fingeraftryk.

Citationsformater