TY - JOUR
T1 - A method for building spatial model of annual weed seed dispersal from experimental data and its application to simulating Bromus sterilis population dispersal
AU - Wang, Jihuai
AU - Christensen, Svend
AU - Hansen, Preben Klarskov
PY - 2008/2/10
Y1 - 2008/2/10
N2 - Spatial model of annual weed seed dispersal, in this article, was theoretically derived. According to the requirements of building the spatial model, we designed and done an indoor experiment of weed seed dispersal by wind. In the experiment, the seeds of Bromus sterilis were released at 100 cm height under different wind velocity conditions. Based on the experimental data, the spatial models of seed dispersal of the weed species were built, which were divided into three types according to the coefficient β < 0, β = 0, β > 0. The results showed that dispersal of annual weed seed in any direction obeyed an approximate Gaussian distribution; under the experimental conditions, spatial distribution type of weed seed dispersal changed with variation of wind velocity. Well-known Howard et al.'s model (Howard et al., 1991) of Bromus sterilis seed dispersal is an especial example of the model built in this article. The result of model analysis indicated that the distribution type described by Howard's model was similar to that of seed dispersal of the weed species at the height of 100 cm under the condition of lower wind velocity (about 2.18 m/s). Using CA simulation analysis we found that mean control agent applying to a cell with weed should have a decrease with an increase of wind velocity to prevent weed with the initial configuration from spreading, which implicated less herbicide needs spraying in every cell with weed on average when wind velocity increases.
AB - Spatial model of annual weed seed dispersal, in this article, was theoretically derived. According to the requirements of building the spatial model, we designed and done an indoor experiment of weed seed dispersal by wind. In the experiment, the seeds of Bromus sterilis were released at 100 cm height under different wind velocity conditions. Based on the experimental data, the spatial models of seed dispersal of the weed species were built, which were divided into three types according to the coefficient β < 0, β = 0, β > 0. The results showed that dispersal of annual weed seed in any direction obeyed an approximate Gaussian distribution; under the experimental conditions, spatial distribution type of weed seed dispersal changed with variation of wind velocity. Well-known Howard et al.'s model (Howard et al., 1991) of Bromus sterilis seed dispersal is an especial example of the model built in this article. The result of model analysis indicated that the distribution type described by Howard's model was similar to that of seed dispersal of the weed species at the height of 100 cm under the condition of lower wind velocity (about 2.18 m/s). Using CA simulation analysis we found that mean control agent applying to a cell with weed should have a decrease with an increase of wind velocity to prevent weed with the initial configuration from spreading, which implicated less herbicide needs spraying in every cell with weed on average when wind velocity increases.
U2 - 10.1016/j.ecolmodel.2007.08.009
DO - 10.1016/j.ecolmodel.2007.08.009
M3 - Journal article
SN - 0304-3800
VL - 210
SP - 446
EP - 452
JO - Ecological Modelling
JF - Ecological Modelling
IS - 4
ER -