Publikationer pr. år
Publikationer pr. år
Blegdamsvej 3, 2200 København N.
Publikationer pr. år
My major focus is to explore the biological role of O-glycans in health and disease. I am a co-PI at the DNRF Copenhagen Center for Glycomics where I lead the GlycoCell projects on O-glycans in peptide hormone biology, lipid metabolism, LDLR function and protein stability.
O-glycans in Protein and Peptide Stability and Function
Traditionally, O-glycans have been found and associated with large mucins containing P/T/S rich domains with high density of O-glycans, where they serve important functions for the structure and stability of mucins required for lubrication and protective effects on lining mucosa and in body fluids. However, recent proteome-wide discovery strategies for O-glycosylation demonstrate that O-glycans are abundantly found on all types of proteins (>80% of all proteins trafficking the secretory pathway are O-glycosylated, Steentoft et al., 2013), and in particular found in more isolated sites often in close proximity to other important PTMs such as PC processing sites, phosphorylation sites (not published), mannosylation sites, ectodomain shedding sites, and most recently activation of G-coupled protein receptors (GPCRs), where they may serve important (co-)regulatory roles in fine-tuning protein functions (Schjoldager et al.,2010, 2011, 2012, Goth et al., 2015, 2012). Our breakthrough in O-glycoproteomics has opened for wide discovery of O-glycoproteins and is now driving a plethora of exciting novel hypotheses of the role of O-glycosylation for diverse types of protein including GPCRs and LDLR related proteins.
Participants
Christoffer Goth
Zilu Ye
Sergey Y Vakhrushev
Yang Mao
Christina Christoffersen (RH, Department of Clinical Biochemistry)
Nabil Seidah (University of Montreal, CA)
Exploring dose-dependent GalNAc-T activity
Numerous studies, from our lab and others, have revealed non-redundant and isoform specific functions of GalNAc-transferases (Kato et al. 2006, Schjoldager et al. 2010, Pedersen et al. 2014, Khetarpal and Schjoldager et al. 2016). These results were generated in knock-out/knock-in systems displaying the abstract effects of complete loss or gain of GalNAc-transferase function. The GALNT genes are often found as candidate genes associated to complex disease traits in Genome-Wide-Association Studies (GWAS). Recently, we validated one such candidate genes, GALNT2, with a GWAS predicted role in regulating HDL and TG (Khetarpal and Schjoldager et al. 2016). We furthermore demonstrate that the GWAS signal for GALNT2 and low HDL is located in the first large intron of the gene close to a liver-specific regulatory element, and several studies have demonstrated that the GWAS SNP signal induced allele-specific transcription differences (Roman et al. 2015, Cavalli et al. 2016). We hypothesize that within the subset of non-redundant GalNAc-T functions hide substrates that are far more sensitive to changes in expression of a specific GalNAc-T, substrates that are selectively regulated in a “fine-tune” manner. To address this, we combined the use of precise genome editing tools and last generation Tet-On system to generate isogenic HEK293 cells in which GalNAc-T2, GalNAc-T3 and GalNAc-T11 can be induced within wild-type range. By subjecting differentially induced isogenic cells to quantitative O-glycoproteomics explore dose-dependent functions of GalNac-Ts ex vivo.
Participants
John Hintze
Eric P. Bennett
Experimental and Clinical Study of GALNT2-Induced Dyslipidemia – Protein O-Glycosylation plays a central role in proprotein processing and lipid metabolism
In a large international collaboration, we have validated a genome-wide association study (GWAS) linkage between O-glycosylation (the GALNT2 gene) and dyslipidemia in multiple species, including rare individuals we identified with homozygous loss of the gene. Using genetic engineering (ZFNs and Crispr/Cas9) and a novel strategy for quantitative differential glycoproteomics, we demonstrated that loss of the GALNT2 gene specifically affects high-density lipoprotein cholesterol through non-redundant O-glycosylation of several known important regulators of lipoprotein metabolism including ANGPTL3 and phospholipid transfer protein (Khetarpal and Schjoldager et al., 2016 and Schjoldager et al. 2015). Now ongoing studies focus to dissect molecular mechanisms using our animal models and further demonstrate that the GALNT2 gene is a common regulator of human metabolism.
Participants
Daniel Rader, University of Pennsylvania
Rami Abou Jamra, University of Leipzig
Eric Leguern, Sorbonne Université
Christina Christoffersen, RH Department of Clinical Biochemistry
Novel Proteoforms of Peptide Hormones Provide Exciting Options for Improving Drug Design
Peptide hormones, neuropeptides or bioactive peptides are small polypeptides with important biological functions. O-glycosylation is a post-translational modification that takes place in the Golgi where up to 20 different isoenzymes glycosylates proteins travelling through the secretory pathway. Through O-glycoproteomics analysis of tissues and biological fluids we recently identified O-glycosylation on mature peptide hormones in biologically important regions. We have identified O-glycans on a number of major therapeutic targets for drug development in endocrinology and in preliminary data, we have shown that O-glycans on peptide hormones can alter receptor signalling and give resistance to proteolytic degradation in vitro. In this project, we join experts from glycobiology and endocrinology to explore and characterize the biology of O-glycans on peptide hormones.
Participants
Thomas Daugbjerg Madsen
Lasse Holst Hansen (RH, Department of Clinical Biochemistry)
Jens Juul Holst (The NNF Center for Basic Metabolic Research)
Jens Peter Gøtze (RH, Department of Clinical Biochemistry)
Pre-graduate teaching in Cell Biology and post-graduate teaching in Glycobiology at the Faculty of Health Sciences.
Supervisor/Co-supervisor - PhD-students (Lasse Holst Hansen (present), John Birger Hintze (present), Yun Kong (past),Christoffer Goth (past), Sarah King-Smith (present), master students (Thomas Daugbjerg Madsen (present), Catharina Steentoft (past) and Lasse Holst Hansen (past), 1 bachelor student (Thomas Daugbjerg Madsen (past)), 1 Erasmus-student (Nathalie Petronella De Wagenaar (past))
I 2015 blev FN-landende enige om 17 Verdensmål til at standse fattigdom, beskytte planeten og sikre velstand for alle. Denne persons arbejde bidrager til følgende verdensmål:
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
Publikation: Bog/antologi/afhandling/rapport › Ph.d.-afhandling