Why is DsbA such an oxidizing disulfide catalyst?

U Grauschopf, Jakob R. Winther, P Korber, T Zander, P Dallinger, J C Bardwell

271 Citations (Scopus)

Abstract

DsbA, a member of the thioredoxin family of disulfide oxidoreductases, acts in catalyzing disulfide bond formation by donating its disulfide to newly translocated proteins. We have found that the two central residues within the active site Cys-30-Pro-31-His-32-Cys-33 motif are critical in determining the exceptional oxidizing power of DsbA. Mutations that change these two residues can alter the equilibrium oxidation potential of DsbA by more than 1000-fold. A quantitative explanation for the very high redox potential of DsbA was found by measuring the pKa of a single residue, Cys-30. The pKa of Cys-30 varied dramatically from mutant to mutant and could accurately predict the oxidizing power of each DsbA mutant protein.
Original languageEnglish
JournalCell
Volume83
Issue number6
Pages (from-to)947-55
Number of pages9
ISSN0092-8674
Publication statusPublished - 1995

Keywords

  • Amino Acid Sequence
  • Base Sequence
  • Binding Sites
  • Catalysis
  • Cysteine
  • Disulfides
  • Enzyme Stability
  • Isomerases
  • Kinetics
  • Molecular Sequence Data
  • Mutation
  • Oxidation-Reduction
  • Oxidoreductases
  • Protein Disulfide-Isomerases
  • Protein Folding
  • Recombinant Fusion Proteins
  • beta-Galactosidase

Fingerprint

Dive into the research topics of 'Why is DsbA such an oxidizing disulfide catalyst?'. Together they form a unique fingerprint.

Cite this