Weakened atmospheric energy transport feedback in cold glacial climates

Ivana Cvijanovic, Peter Lang Langen, Eigil Kaas

5 Citations (Scopus)

Abstract

The response of atmospheric energy transport during Northern Hemisphere cooling and warming from present day (PD) and Last Glacial Maximum (LGM) conditions is investigated using sea surface temperature anomalies derived from a freshwater hosing experiment. The present day climate shows enhanced sensitivity of the atmospheric mid-latitude energy transport compared to that of the LGM, suggesting its ability to reorganize more easily and thereby dampen high latitude temperature anomalies that may arise from changes in the oceanic transport. This effect is found to be a result of both the atmospheric and surface flux response. The increased PD transport sensitivity relative to that of the LGM is linked to a stronger dry static energy transport response which, in turn, is mainly driven by larger changes in the transient eddy heat flux. In comparison, changes in mid-latitude latent heat transport play a minor role in the overall transport sensitivity.

Original languageEnglish
JournalClimate of the Past
Volume7
Pages (from-to)1061-1073
Number of pages12
ISSN1814-9324
DOIs
Publication statusPublished - 6 Oct 2011

Fingerprint

Dive into the research topics of 'Weakened atmospheric energy transport feedback in cold glacial climates'. Together they form a unique fingerprint.

Cite this