TY - JOUR
T1 - Vocal imitation in parrots allows addressing of specific individuals in a dynamic communication network
AU - Balsby, Thorsten Johannes Skovbjerg
AU - Momberg, Jane Vestergaard
AU - Dabelsteen, Torben
PY - 2012/11/21
Y1 - 2012/11/21
N2 - Parrots in captivity are known for their ability to vocally imitate humans and recently it has been shown that wild-living orange-fronted conures are able to immediately imitate other individuals' contact calls. The function of this exceptional ability to imitate remains unclear. However, orange-fronted conures live in fission-fusion flocks where they encounter many different individuals every day, and it is possible that their vocal imitation ability is a flexible means to address a specific individual within a flock. We tested this via playback to short-term captive wild conures. Test birds were placed together in pairs in outdoor aviaries to form simple flocks. To simulate imitation of a specific individual these pairs received playback of contact calls that primarily imitate one of the two birds. Overall, individuals that received simulated vocal imitations of its calls responded more frequently and faster than the other individual. This suggests that orange-fronted conures can use imitations of contact calls to address specific individuals of a flock. In the discussion we argue that the fission-fusion flock dynamics of many parrot species has been an important factor in evolving conures' and other parrots' exceptional ability to imitate.
AB - Parrots in captivity are known for their ability to vocally imitate humans and recently it has been shown that wild-living orange-fronted conures are able to immediately imitate other individuals' contact calls. The function of this exceptional ability to imitate remains unclear. However, orange-fronted conures live in fission-fusion flocks where they encounter many different individuals every day, and it is possible that their vocal imitation ability is a flexible means to address a specific individual within a flock. We tested this via playback to short-term captive wild conures. Test birds were placed together in pairs in outdoor aviaries to form simple flocks. To simulate imitation of a specific individual these pairs received playback of contact calls that primarily imitate one of the two birds. Overall, individuals that received simulated vocal imitations of its calls responded more frequently and faster than the other individual. This suggests that orange-fronted conures can use imitations of contact calls to address specific individuals of a flock. In the discussion we argue that the fission-fusion flock dynamics of many parrot species has been an important factor in evolving conures' and other parrots' exceptional ability to imitate.
U2 - 10.1371/journal.pone.0049747
DO - 10.1371/journal.pone.0049747
M3 - Journal article
C2 - 23185424
SN - 1932-6203
VL - 7
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 11
ER -