TY - JOUR
T1 - Vibrational circular dichroism spectroscopy of a spin-triplet bis-(biuretato) cobaltate(III) coordination compound with low-lying electronic transitions
AU - Johannessen, Christian
AU - Thulstrup, Peter Waaben
PY - 2007
Y1 - 2007
N2 - Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy was applied in the analysis of vibrational and low lying electronic transitions of a triplet ground state cobalt(III) coordination compound. The spectroscopic measurements were performed on the tetrabutylammonium salt of (6S,7S)-1,3,5,8,10,12-hexaaza-2,4,9,11-tetraoxo-6,7-diphenyl-dodecanato(4-)cobaltate(III) in DMSO solution and in potassium bromide pellets. The chiral anion exhibits an unusual geometry for cobalt(III), being four-coordinate, planar, and paramagnetic with an intermediate spin state. The spectroscopic results were compared to measurements performed on the free ligand and to theoretical calculations using density functional theory (B3LYP/TZVP). The results of the VCD analysis of the coordination compound identified an electronic, dipole-forbidden, magnetic dipole-allowed low-lying d-d transition located in the mid infrared, as well as several amide stretch transitions located in the fingerprint region (1800-1100 cm-1), in both the liquid and solid phase. VCD signals were found to be 5-10 times higher than expected, indicating enhancement of the vibrational CD signals, caused by coupling of the vibrational transitions with the close-lying electronic transition.
AB - Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy was applied in the analysis of vibrational and low lying electronic transitions of a triplet ground state cobalt(III) coordination compound. The spectroscopic measurements were performed on the tetrabutylammonium salt of (6S,7S)-1,3,5,8,10,12-hexaaza-2,4,9,11-tetraoxo-6,7-diphenyl-dodecanato(4-)cobaltate(III) in DMSO solution and in potassium bromide pellets. The chiral anion exhibits an unusual geometry for cobalt(III), being four-coordinate, planar, and paramagnetic with an intermediate spin state. The spectroscopic results were compared to measurements performed on the free ligand and to theoretical calculations using density functional theory (B3LYP/TZVP). The results of the VCD analysis of the coordination compound identified an electronic, dipole-forbidden, magnetic dipole-allowed low-lying d-d transition located in the mid infrared, as well as several amide stretch transitions located in the fingerprint region (1800-1100 cm-1), in both the liquid and solid phase. VCD signals were found to be 5-10 times higher than expected, indicating enhancement of the vibrational CD signals, caused by coupling of the vibrational transitions with the close-lying electronic transition.
U2 - 10.1039/b618995d
DO - 10.1039/b618995d
M3 - Journal article
C2 - 17325777
SN - 1477-9226
VL - 10
SP - 1028
EP - 1033
JO - Acta chemica Scandinavica. Series A: Physical and inorganic chemistry
JF - Acta chemica Scandinavica. Series A: Physical and inorganic chemistry
IS - 10
ER -