VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation

Kristoffer Skovbo Winther, Jai J. Tree, David Tollervey, Kenn Gerdes

59 Citations (Scopus)
98 Downloads (Pure)

Abstract

The major human pathogen Mycobacterium tuberculosis can survive in the host organism for decades without causing symptoms. A large cohort of Toxin-Antitoxin (TA) modules contribute to this persistence. Of these, 48 TA modules belong to the vapBC (virulence associated protein) gene family. VapC toxins are PIN domain endonucleases that, in enterobacteria, inhibit translation by site-specific cleavage of initiator tRNA. In contrast, VapC20 of M. tuberculosis inhibits translation by site-specific cleavage of the universally conserved Sarcin-Ricin loop (SRL) in 23S rRNA. Here we identify the cellular targets of 12 VapCs from M. tuberculosis by applying UV-crosslinking and deep sequencing. Remarkably, these VapCs are all endoribonucleases that cleave RNAs essential for decoding at the ribosomal A-site. Eleven VapCs cleave specific tRNAs while one exhibits SRL cleavage activity. These findings suggest that multiple vapBC modules contribute to the survival of M. tuberculosis in its human host by reducing the level of translation.

Original languageEnglish
JournalNucleic Acids Research
Volume44
Issue number20
Pages (from-to)9860-9871
Number of pages12
ISSN0305-1048
DOIs
Publication statusPublished - Nov 2016

Fingerprint

Dive into the research topics of 'VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation'. Together they form a unique fingerprint.

Cite this