Abstract
A total of 36 mink dams and their litters of 3, 6 or 9 kits were used for determination of milk intake of the suckling young by means of deuterium dilution technique, and chemical composition of milk and of kit bodies. Measurements were performed during lactation weeks 1-4, each week with 3 dams with each litter size. Milk intake was determined over a 48 h measurement period, and by the end of this milk samples were collected and 2 kits (litters of 6 and 9) or 1 kit per litter (litters of 3) were killed for body chemical composition. Based on the results, different models were applied for calculation of the energetic efficiency of milk. Dam milk yield increased steadily from week 1 until week 3 but only slightly from week 3 to 4. The increase declined with increasing litter size, and for dams suckling 9 kits the increment from week 3 to week 4 was only 2 g. The dry matter content of milk increased significantly as lactation progressed, being reflected in crude protein increasing from 6.9% in lactation week 1 to 8.1% in week 4. Milk fat increased concomitantly from 5.6% to 8.0%. In kit bodies, crude protein content increased from 9.4% in week 1 to about 12% in weeks 3 and 4. Body fat content increased from week 1 (4.1%) to week 3 (8.4%) and then declined in week 4 (7.1%). Animals suckled in litters of 3 kits had the highest milk intake and live weight and kits suckled in litters of 9 had the lowest milk intake, live weight and daily gain. In terms of milk intake per g gain kits in litters of 6 were the most efficient, with 4.1 g milk per g body gain. The metabolizable energy requirement for maintenance (MEm) was estimated to 448 kJ/kg(0.75 and the efficiency of utilization of ME for body gain (kg) to 0.67, the estimates being higher (MEm) or in good agreement with previous findings (kg) in suckling mink kits.
Original language | English |
---|---|
Journal | Archives of Animal Nutrition |
Volume | 58 |
Issue number | 2 |
Pages (from-to) | 181-94 |
Number of pages | 14 |
ISSN | 1745-039X |
DOIs | |
Publication status | Published - Apr 2004 |
Keywords
- Animal Nutritional Physiological Phenomena
- Animals
- Animals, Suckling
- Body Composition
- Deuterium
- Energy Intake
- Energy Metabolism
- Female
- Lactation
- Litter Size
- Milk
- Mink
- Weight Gain