Union-find with constant time deletions

Stephen Alstrup, Mikkel Thorup, Inge Li Gørtz, Theis Rauhe, Uri Zwick

7 Citations (Scopus)

Abstract

A union-find data structure maintains a collection of disjoint sets under the operations makeset, union, and find. Kaplan, Shafrir, and Tarjan [SODA 2002] designed data structures for an extension of the union-find problem in which items of the sets maintained may be deleted. The cost of a delete operation in their implementations is essentially the same as the cost of a find operation; namely, O(log n) worst-case and O(α⌈ M/N⌉ (n)) amortized, where n is the number of items in the set returned by the find operation, N is the total number of makeset operations performed, M is the total number of find operations performed, and α⌈ M/N⌉(n) is a functional inverse of Ackermann’s function. They left open the question whether delete operations can be implemented more efficiently than find operations, for example, in o(log n) worst-case time. We resolve this open problem by presenting a relatively simple modification of the classical union-find data structure that supports delete, as well as makeset and union operations, in constant worst-case time, while still supporting find operations in O(log n) worst-case time and O(α⌈ M/N⌉ (n)) amortized time.

Our analysis supplies, in particular, a very concise potential-based amortized analysis of the standard union-find data structure that yields an O(α⌈ M/N⌉ (n)) amortized bound on the cost of find operations. All previous potential-based analyses yielded the weaker amortized bound of O(α⌈ M/N⌉ (N)). Furthermore, our tighter analysis extends to one-path variants of the path compression technique such as path splitting.
Original languageEnglish
Article number6
JournalA C M Transactions on Algorithms
Volume11
Issue number1
Number of pages28
ISSN1549-6325
DOIs
Publication statusPublished - 11 Aug 2014

Keywords

  • Union-find, disjoint sets

Fingerprint

Dive into the research topics of 'Union-find with constant time deletions'. Together they form a unique fingerprint.

Cite this