TY - JOUR
T1 - Training Midwives to Perform Basic Obstetric Point-of-Care Ultrasound in Rural Areas Using a Tablet Platform and Mobile Phone Transmission Technology
T2 - A WFUMB COE Project
AU - Vinayak, Sudhir
AU - Sande, Joyce
AU - Nisenbaum, Harvey
AU - Nolsøe, Christian Pállson
N1 - Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
PY - 2017/10
Y1 - 2017/10
N2 - Point-of-care ultrasound (POCUS) has become a topical subject and can be applied in a variety of ways with differing outcomes. The cost of all diagnostic procedures including obstetric ultrasound examinations is a major factor in the developing world and POCUS is only useful if it can be equated to good outcomes at a lower cost than a routine obstetric examination. The aim of this study was to assess a number of processes including accuracy of images and reports generated by midwives, performance of a tablet-sized ultrasound scanner, training of midwives to complete ultrasounds, teleradiology solution transmissions of images via internet, review of images by a radiologist, communication between midwife and radiologist, use of this technique to identify high-risk patients and improvement of the education and teleradiology model components. The midwives had no previous experience in ultrasound. They were stationed in rural locations where POCUS was available for the first time. After scanning the patients, an interim report was generated by the midwives and sent electronically together with all images to the main hospital for validation. Unique software was used to send lossless images by mobile phone using a modem. Transmission times were short and quality of images transmitted was excellent. All reports were validated by two experienced radiologists in our department and returned to the centers using the same transmission software. The transmission times, quality of scans, quality of reports and other parameters were recorded and monitored. Analysis showed excellent correlation between provisional and validated reports. Reporting accuracy of scans performed by the midwives was 99.63%. Overall flow turnaround time (from patient presentation to validated report) was initially 35 min but reduced to 25 min. The unique mobile phone transmission was faultless and there was no degradation of image quality. We found excellent correlation between final outcomes of the pregnancies and diagnoses on the basis of reports generated by the midwives. Only 1 discrepancy was found in the midwives' reports. Scan results versus actual outcomes revealed 2 discrepancies in the 20 patients identified as high risk. In conclusion, we found that it is valuable to train midwives in POCUS to use an ultrasound tablet device and transmit images and reports via the internet to radiologists for review of accuracy. This focus on the identification of high-risk patients can be valuable in a remote healthcare facility.
AB - Point-of-care ultrasound (POCUS) has become a topical subject and can be applied in a variety of ways with differing outcomes. The cost of all diagnostic procedures including obstetric ultrasound examinations is a major factor in the developing world and POCUS is only useful if it can be equated to good outcomes at a lower cost than a routine obstetric examination. The aim of this study was to assess a number of processes including accuracy of images and reports generated by midwives, performance of a tablet-sized ultrasound scanner, training of midwives to complete ultrasounds, teleradiology solution transmissions of images via internet, review of images by a radiologist, communication between midwife and radiologist, use of this technique to identify high-risk patients and improvement of the education and teleradiology model components. The midwives had no previous experience in ultrasound. They were stationed in rural locations where POCUS was available for the first time. After scanning the patients, an interim report was generated by the midwives and sent electronically together with all images to the main hospital for validation. Unique software was used to send lossless images by mobile phone using a modem. Transmission times were short and quality of images transmitted was excellent. All reports were validated by two experienced radiologists in our department and returned to the centers using the same transmission software. The transmission times, quality of scans, quality of reports and other parameters were recorded and monitored. Analysis showed excellent correlation between provisional and validated reports. Reporting accuracy of scans performed by the midwives was 99.63%. Overall flow turnaround time (from patient presentation to validated report) was initially 35 min but reduced to 25 min. The unique mobile phone transmission was faultless and there was no degradation of image quality. We found excellent correlation between final outcomes of the pregnancies and diagnoses on the basis of reports generated by the midwives. Only 1 discrepancy was found in the midwives' reports. Scan results versus actual outcomes revealed 2 discrepancies in the 20 patients identified as high risk. In conclusion, we found that it is valuable to train midwives in POCUS to use an ultrasound tablet device and transmit images and reports via the internet to radiologists for review of accuracy. This focus on the identification of high-risk patients can be valuable in a remote healthcare facility.
U2 - 10.1016/j.ultrasmedbio.2017.05.024
DO - 10.1016/j.ultrasmedbio.2017.05.024
M3 - Journal article
C2 - 28716434
SN - 0301-5629
VL - 43
SP - 2125
EP - 2132
JO - Ultrasound in Medicine & Biology
JF - Ultrasound in Medicine & Biology
IS - 10
ER -