Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series

Antoine Fages, Kristian Hanghøj, Naveed Khan, Charleen Gaunitz, Andaine Seguin-Orlando, Michela Leonardi, Christian McCrory Constantz, Cristina Gamba, Khaled A.S. Al-Rasheid, Silvia Albizuri, Ahmed H. Alfarhan, Morten Allentoft, Saleh Alquraishi, David Anthony, Nurbol Baimukhanov, James H. Barrett, Jamsranjav Bayarsaikhan, Norbert Benecke, Eloísa Bernáldez-Sánchez, Luis Berrocal-RangelFereidoun Biglari, Sanne Boessenkool, Bazartseren Boldgiv, Gottfried Brem, Dorcas Brown, Joachim Burger, Eric Crubézy, Linas Daugnora, Hossein Davoudi, Peter de Barros Damgaard, María de los Ángeles de Chorro y de Villa-Ceballos, Sabine Deschler-Erb, Cleia Detry, Nadine Dill, Maria do Mar Oom, Anna Dohr, Sturla Ellingvåg, Diimaajav Erdenebaatar, Homa Fathi, Sabine Felkel, Carlos Fernández-Rodríguez, Esteban García-Viñas, Mietje Germonpré, José D. Granado, Jón H. Hallsson, Helmut Hemmer, Michael Hofreiter, Aleksei Kasparov, Mutalib Khasanov, Roya Khazaeli, Pavel Kosintsev, Kristian Kristiansen, Tabaldiev Kubatbek, Lukas Kuderna, Pavel Kuznetsov, Haeedeh Laleh, Jennifer A. Leonard, Johanna Lhuillier, Corina Liesau von Lettow-Vorbeck, Andrey Logvin, Lembi Lõugas, Arne Ludwig, Cristina Luis, Ana Margarida Arruda, Tomas Marques-Bonet, Raquel Matoso Silva, Victor Merz, Enkhbayar Mijiddorj, Bryan K. Miller, Oleg Monchalov, Fatemeh A. Mohaseb, Arturo Morales, Ariadna Nieto-Espinet, Heidi Nistelberger, Vedat Onar, Albína H. Pálsdóttir, Vladimir Pitulko, Konstantin Pitskhelauri, Mélanie Pruvost, Petra Rajic Sikanjic, Anita Rapan Papeša, Natalia Roslyakova, Alireza Sardari, Eberhard Sauer, Renate Schafberg, Amelie Scheu, Jörg Schibler, Angela Schlumbaum, Nathalie Serrand, Aitor Serres-Armero, Beth Shapiro, Shiva Sheikhi Seno, Irina Shevnina, Sonia Shidrang, John Southon, Bastiaan Star, Naomi Sykes, Kamal Taheri, William Taylor, Wolf Rüdiger Teegen, Tajana Trbojević Vukičević, Simon Trixl, Dashzeveg Tumen, Sainbileg Undrakhbold, Emma Usmanova, Ali Vahdati, Silvia Valenzuela-Lamas, Catarina Viegas, Barbara Wallner, Jaco Weinstock, Victor Zaibert, Benoit Clavel, Sébastien Lepetz, Marjan Mashkour, Agnar Helgason, Kári Stefánsson, Eric Barrey, Eske Willerslev, Alan K. Outram, Pablo Librado, Ludovic Orlando*

*Corresponding author for this work
65 Citations (Scopus)

Abstract

Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN “speed gene,” only rose in popularity within the last millennium. Finally, the development of modern breeding impacted genetic diversity more dramatically than the previous millennia of human management. Genome-wide data from 278 ancient equids provide insights into how ancient equestrian civilizations managed, exchanged, and bred horses and indicate vast loss of genetic diversity as well as the existence of two extinct lineages of horses that failed to contribute to modern domestic animals.

Original languageEnglish
JournalCell
Volume177
Issue number6
Pages (from-to)1419-1435.e31
ISSN0092-8674
DOIs
Publication statusPublished - 30 May 2019

Keywords

  • ancient DNA
  • animal breeding
  • diversity
  • domestication
  • equestrian civilizations
  • extinct lineages
  • horses
  • management
  • mules
  • selection

Fingerprint

Dive into the research topics of 'Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series'. Together they form a unique fingerprint.

Cite this