Abstract
Recent studies have confirmed older observations that the enterotoxins enhance enteric bacterial colonization and pathogenicity. How and why this happens remains unknown at this time. It appears that toxins such as the heat-labile enterotoxin (LT) from Escherichia coli can help overcome the innate mucosal barrier as a key step in enteric pathogen survival. We review key observations relevant to the roles of LT and cholera toxin in protective immunity and the effects of these toxins on innate mucosal defenses. We suggest either that toxin-mediated fluid secretion mechanically disrupts the mucus layer or that toxins interfere with innate mucosal defenses by other means. Such a breach gives pathogens access to the enterocyte, leading to binding and pathogenicity by enterotoxigenic E. coli (ETEC) and other organisms. Given the common exposure to LT(+) ETEC by humans visiting or residing in regions of endemicity, barrier disruption should frequently render the gut vulnerable to ETEC and other enteric infections. Conversely, toxin immunity would be expected to block this process by protecting the innate mucosal barrier. Years ago, Peltola et al. (Lancet 338:1285-1289, 1991) observed unexpectedly broad protective effects against LT(+) ETEC and mixed infections when using a toxin-based enteric vaccine. If toxins truly exert barrier-disruptive effects as a key step in pathogenesis, then a return to classic toxin-based vaccine strategies for enteric disease is warranted and can be expected to have unexpectedly broad protective effects.
Original language | English |
---|---|
Journal | Infection and Immunity |
Volume | 77 |
Issue number | 12 |
Pages (from-to) | 5206-15 |
Number of pages | 9 |
ISSN | 0019-9567 |
DOIs | |
Publication status | Published - 2009 |