TY - JOUR
T1 - The weak fundamental NH-stretching transition in amines
AU - Schrøder, Sidsel Dahl
AU - Hansen, Anne Schou
AU - Wallberg, Jens Heide
AU - Nielsen, Anne Rath
AU - Du, Lin
AU - Kjærgaard, Henrik Grum
PY - 2017/2/15
Y1 - 2017/2/15
N2 - Absolute intensities of NH-stretching fundamental and overtone transitions of gas phase aniline, methylamine, ethylamine, cyclopropylamine, methylethylamine, diethylamine and pyrrolidine have been measured with long path length conventional absorption spectroscopy. To support the assignments of NH-stretching transitions, transition frequencies and intensities were calculated with the local mode model using ab initio calculated local mode parameters and dipole moment functions obtained at the CCSD(T)-F12a/VDZ-F12 level of theory. For aniline, the absolute intensities of the NH-stretching transitions show the typical decrease of approximately an order of magnitude for each successive vibrational excitation. For methylamine, ethylamine, cyclopropylamine, methylethylamine, diethylamine and pyrrolidine, the observed absolute intensities of the fundamental NH-stretching transition is weak and of similar strength or even weaker than the corresponding first overtone transition. Characteristic for the amines with a normal fundamental intensity is a conjugated double bond next to the amine group.
AB - Absolute intensities of NH-stretching fundamental and overtone transitions of gas phase aniline, methylamine, ethylamine, cyclopropylamine, methylethylamine, diethylamine and pyrrolidine have been measured with long path length conventional absorption spectroscopy. To support the assignments of NH-stretching transitions, transition frequencies and intensities were calculated with the local mode model using ab initio calculated local mode parameters and dipole moment functions obtained at the CCSD(T)-F12a/VDZ-F12 level of theory. For aniline, the absolute intensities of the NH-stretching transitions show the typical decrease of approximately an order of magnitude for each successive vibrational excitation. For methylamine, ethylamine, cyclopropylamine, methylethylamine, diethylamine and pyrrolidine, the observed absolute intensities of the fundamental NH-stretching transition is weak and of similar strength or even weaker than the corresponding first overtone transition. Characteristic for the amines with a normal fundamental intensity is a conjugated double bond next to the amine group.
U2 - 10.1016/j.saa.2016.09.003
DO - 10.1016/j.saa.2016.09.003
M3 - Journal article
C2 - 27664544
SN - 1386-1425
VL - 173
SP - 201
EP - 206
JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
ER -