TY - JOUR
T1 - The modification of the wobble base of tRNA(Glu) modulates the translation rate of glutamic acid codons in vivo
AU - Krüger, Malene K.
AU - Pedersen, Steen
AU - Hagervall, Tord G.
AU - Sørensen, Michael A.
PY - 1998/12/4
Y1 - 1998/12/4
N2 - In Escherichia coli, uridine in the wobble position of tRNA(Glu) and tRNA(Lys) is modified to mnm5s2U34. This modification is believed to restrict the base-pairing capability, i.e. to prevent misreading of near-cognate codons and reduce the efficiency of cognate codon reading, especially of codons ending in G. We have determined the influence of the 5-methylaminomethyl and the 2-thio modifications of mnm5s2U34 in tRNA(Glu) the on translation rate of the glutamate codons GAA and GAG in vivo. in wild-type cells, GAG is translated slower (7.7 codons/second) and GAA faster (18 codons/second) than the average codon (13 codons/second). Surprisingly, tRNA(Glu) lacking the 5-methylaminomethyl group, thus containing s2U34, translated GAA twofold faster (47 codons/second) and GAG fourfold slower (1.9 codons/second) than fully modified tRNA(Glu). In contrast, tRNA(Glu) that contains mnm5U34 instead of mnm5s2U34 translated GAA fourfold slower (4.5 codons/second) and GAG only 20% slower (6.2 codons/second). Clearly, the 5-methylaminomethyl group of mnm5s2U34 facilitates base-pairing with G while decreasing base-pairing with A, resulting in rates of translation of GAG and GAA that approach that of the average codon. The 2-thio group increases the recognition of GAA and has only a minor effect on the decoding of GAG. Furthermore, the 2-thio group is important for aminoacylation (see the accompanying paper). These data imply that the function of mnm5s2U34 may be different from what has been suggested previously.
AB - In Escherichia coli, uridine in the wobble position of tRNA(Glu) and tRNA(Lys) is modified to mnm5s2U34. This modification is believed to restrict the base-pairing capability, i.e. to prevent misreading of near-cognate codons and reduce the efficiency of cognate codon reading, especially of codons ending in G. We have determined the influence of the 5-methylaminomethyl and the 2-thio modifications of mnm5s2U34 in tRNA(Glu) the on translation rate of the glutamate codons GAA and GAG in vivo. in wild-type cells, GAG is translated slower (7.7 codons/second) and GAA faster (18 codons/second) than the average codon (13 codons/second). Surprisingly, tRNA(Glu) lacking the 5-methylaminomethyl group, thus containing s2U34, translated GAA twofold faster (47 codons/second) and GAG fourfold slower (1.9 codons/second) than fully modified tRNA(Glu). In contrast, tRNA(Glu) that contains mnm5U34 instead of mnm5s2U34 translated GAA fourfold slower (4.5 codons/second) and GAG only 20% slower (6.2 codons/second). Clearly, the 5-methylaminomethyl group of mnm5s2U34 facilitates base-pairing with G while decreasing base-pairing with A, resulting in rates of translation of GAG and GAA that approach that of the average codon. The 2-thio group increases the recognition of GAA and has only a minor effect on the decoding of GAG. Furthermore, the 2-thio group is important for aminoacylation (see the accompanying paper). These data imply that the function of mnm5s2U34 may be different from what has been suggested previously.
KW - 5-Methylaminomethyl-2-thiouridine
KW - Affinity
KW - Anticodon
KW - Codon
KW - Escherichia coli
UR - http://www.scopus.com/inward/record.url?scp=0042492708&partnerID=8YFLogxK
U2 - 10.1006/jmbi.1998.2196
DO - 10.1006/jmbi.1998.2196
M3 - Journal article
C2 - 9826503
AN - SCOPUS:0042492708
SN - 0022-2836
VL - 284
SP - 621
EP - 631
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
IS - 3
ER -