TY - JOUR
T1 - The metabolic profile of long-lived Drosophila melanogaster
AU - Sarup, Pernille Merete
AU - Pedersen, Simon Metz Mariendal
AU - Nielsen, Niels Chr
AU - Malmendal, Anders
AU - Loeschcke, Volker
PY - 2012/10/23
Y1 - 2012/10/23
N2 - We investigated the age-related changes in the metabolic profile of male Drosophila melanogaster and compared the metabolic profile of flies selected for increased longevity to that of control flies of equal age. We found clear differences in metabolite composition between selection regimes and among age groups. Contrary to results found in a previous study of the transcriptome of these lines the metabolic profile did not show a younger pattern in longevity-selected (LS) flies than in same aged control (C) flies. Rather, many of the metabolites affected by age had levels common to older control individuals in the young LS flies. Furthermore, ageing affected the metabolome in a different LS specific direction. The selection induced difference increased with age. Some metabolites involved in oxidative phosphorylation changed with age highlighting the importance of mitochondrial function in the ageing process. However, these metabolites were not affected by selection for increased longevity, indicating that improvements of mitochondrial function were not involved in the increased lifespan of LS lines. Of the eight metabolites identified as having a significant difference in relative abundance between selection regimes in our study choline, lysine and glucose also show difference among lifespan phenotypes in C. elegans indicating that the correlation between the concentration of these metabolites and longevity was evolutionary conserved. Links between longevity and choline concentration is also found in mice making this metabolite an obvious target for further study.
AB - We investigated the age-related changes in the metabolic profile of male Drosophila melanogaster and compared the metabolic profile of flies selected for increased longevity to that of control flies of equal age. We found clear differences in metabolite composition between selection regimes and among age groups. Contrary to results found in a previous study of the transcriptome of these lines the metabolic profile did not show a younger pattern in longevity-selected (LS) flies than in same aged control (C) flies. Rather, many of the metabolites affected by age had levels common to older control individuals in the young LS flies. Furthermore, ageing affected the metabolome in a different LS specific direction. The selection induced difference increased with age. Some metabolites involved in oxidative phosphorylation changed with age highlighting the importance of mitochondrial function in the ageing process. However, these metabolites were not affected by selection for increased longevity, indicating that improvements of mitochondrial function were not involved in the increased lifespan of LS lines. Of the eight metabolites identified as having a significant difference in relative abundance between selection regimes in our study choline, lysine and glucose also show difference among lifespan phenotypes in C. elegans indicating that the correlation between the concentration of these metabolites and longevity was evolutionary conserved. Links between longevity and choline concentration is also found in mice making this metabolite an obvious target for further study.
U2 - 10.1371/journal.pone.0047461
DO - 10.1371/journal.pone.0047461
M3 - Journal article
C2 - 23110072
SN - 1932-6203
VL - 7
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 10
ER -