TY - JOUR
T1 - The inverted chevron plot measured by NMR relaxation reveals a native-like unfolding intermediate in acyl-CoA binding protein
AU - Teilum, Kaare
AU - Poulsen, Flemming M
AU - Akke, Mikael
N1 - Keywords: Anilino Naphthalenesulfonates; Animals; Cattle; Diazepam Binding Inhibitor; Fluorescent Dyes; Models, Molecular; Nuclear Magnetic Resonance, Biomolecular; Protein Denaturation; Protein Folding; Protein Structure, Secondary; Temperature
PY - 2006
Y1 - 2006
N2 - The folding kinetics of bovine acyl-CoA binding protein was studied by 15N relaxation dispersion measurements under equilibrium conditions. Relaxation dispersion profiles were measured at several concentrations of guanidine hydrochloride (GuHCl). The unfolding rate constant (k(u)) was determined under conditions favoring folding, for which the folding rate constant (k(f)) dominates the relaxation in stopped-flow kinetic measurements. Conversely, k(f) was determined under conditions favoring unfolding, for which k(u) dominates stopped-flow data. The rates determined by NMR therefore complement those from stopped-flow kinetics and define an "inverted chevron" plot. The combination of NMR relaxation and stopped-flow kinetic measurements allowed determination of k(f) and k(u) in the range from 0.48 M GuHCl to 1.28 M GuHCl. Individually, the stopped-flow and NMR data fit two-state models for folding. However, although the values of k(f) determined by the two methods agree, the values of k(u) do not. As a result, a combined analysis of all data does not comply with a two-state model but indicates that an unfolding intermediate exists on the native side of the dominant energy barrier. The denaturant and temperature dependencies of the chemical shifts and k(u) indicate that the intermediate state is structurally similar to the native state. Equilibrium unfolding monitored by optical spectroscopy corroborate these conclusions. The temperature dependence of the chemical shifts identifies regions of the protein that are selectively destabilized in the intermediate. These results illustrate the power of combining stopped-flow kinetics and NMR spectroscopy to analyze protein folding.
AB - The folding kinetics of bovine acyl-CoA binding protein was studied by 15N relaxation dispersion measurements under equilibrium conditions. Relaxation dispersion profiles were measured at several concentrations of guanidine hydrochloride (GuHCl). The unfolding rate constant (k(u)) was determined under conditions favoring folding, for which the folding rate constant (k(f)) dominates the relaxation in stopped-flow kinetic measurements. Conversely, k(f) was determined under conditions favoring unfolding, for which k(u) dominates stopped-flow data. The rates determined by NMR therefore complement those from stopped-flow kinetics and define an "inverted chevron" plot. The combination of NMR relaxation and stopped-flow kinetic measurements allowed determination of k(f) and k(u) in the range from 0.48 M GuHCl to 1.28 M GuHCl. Individually, the stopped-flow and NMR data fit two-state models for folding. However, although the values of k(f) determined by the two methods agree, the values of k(u) do not. As a result, a combined analysis of all data does not comply with a two-state model but indicates that an unfolding intermediate exists on the native side of the dominant energy barrier. The denaturant and temperature dependencies of the chemical shifts and k(u) indicate that the intermediate state is structurally similar to the native state. Equilibrium unfolding monitored by optical spectroscopy corroborate these conclusions. The temperature dependence of the chemical shifts identifies regions of the protein that are selectively destabilized in the intermediate. These results illustrate the power of combining stopped-flow kinetics and NMR spectroscopy to analyze protein folding.
U2 - 10.1073/pnas.0509100103
DO - 10.1073/pnas.0509100103
M3 - Journal article
C2 - 16641108
SN - 0027-8424
VL - 103
SP - 6877
EP - 6882
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 18
ER -