The Environment Shapes the Inner Vestibule of LeuT

Azmat Sohail, Kumaresan Jayaraman, Santhoshkannan Venkatesan, Kamil Gotfryd, Markus Daerr, Ulrik Gether, Claus J Loland, Klaus T Wanner, Michael Freissmuth, Harald H Sitte, Walter Sandtner, Thomas Stockner

10 Citations (Scopus)
306 Downloads (Pure)

Abstract

Human neurotransmitter transporters are found in the nervous system terminating synaptic signals by rapid removal of neurotransmitter molecules from the synaptic cleft. The homologous transporter LeuT, found in Aquifex aeolicus, was crystallized in different conformations. Here, we investigated the inward-open state of LeuT. We compared LeuT in membranes and micelles using molecular dynamics simulations and lanthanide-based resonance energy transfer (LRET). Simulations of micelle-solubilized LeuT revealed a stable and widely open inward-facing conformation. However, this conformation was unstable in a membrane environment. The helix dipole and the charged amino acid of the first transmembrane helix (TM1A) partitioned out of the hydrophobic membrane core. Free energy calculations showed that movement of TM1A by 0.30 nm was driven by a free energy difference of ~15 kJ/mol. Distance measurements by LRET showed TM1A movements, consistent with the simulations, confirming a substantially different inward-open conformation in lipid bilayer from that inferred from the crystal structure.

Original languageEnglish
Article numbere1005197
JournalPLoS Computational Biology
Volume12
Issue number11
Number of pages24
ISSN1553-734X
DOIs
Publication statusPublished - Nov 2016

Fingerprint

Dive into the research topics of 'The Environment Shapes the Inner Vestibule of LeuT'. Together they form a unique fingerprint.

Cite this