The contribution of air breathing to aerobic scope and exercise performance in the banded knifefish Gymnotus carapo L

David J. McKenzie, John Fleng Steffensen, Edwin W. Taylor, Augusto S. Abe

21 Citations (Scopus)

Abstract

The contribution of air breathing to aerobic metabolic scope and exercise performance was investigated in a teleost with bimodal respiration, the banded knifefish, submitted to a critical swimming speed (U(crit)) protocol at 30°C. Seven individuals (mean ± s.e.m. mass 89±7 g, total length 230±4 mm) achieved a U(crit) of 2.1±1 body lengths (BL) s(-1) and an active metabolic rate (AMR) of 350±21 mg kg(-1) h(-1), with 38±6% derived from air breathing. All of the knifefish exhibited a significant increase in air-breathing frequency (f(AB)) with swimming speed. If denied access to air in normoxia, these individuals achieved a U(crit) of 2.0±0.2 BL s(-1) and an AMR of 368±24 mg kg(-1) h(-1) by gill ventilation alone. In normoxia, therefore, the contribution of air breathing to scope and exercise was entirely facultative. In aquatic hypoxia (P(O(2))=4 kPa) with access to normoxic air, the knifefish achieved a U(crit) of 2.0±0.1 BL s(-1) and an AMR of 338±29 mg kg(-1) h(-1), similar to aquatic normoxia, but with 55±5% of AMR derived from air breathing. Indeed, f(AB) was higher than in normoxia at all swimming speeds, with a profound exponential increase during exercise. If the knifefish were denied access to air in hypoxia, U(crit) declined to 1.2±0.1 BL s(-1) and AMR declined to 199±29 mg kg(-1) h(-1). Therefore, air breathing allowed the knifefish to avoid limitations to aerobic scope and exercise performance in aquatic hypoxia.
Original languageEnglish
JournalJournal of Experimental Biology
Volume215
Pages (from-to)1323-1330
Number of pages8
ISSN0022-0949
DOIs
Publication statusPublished - Apr 2012

Fingerprint

Dive into the research topics of 'The contribution of air breathing to aerobic scope and exercise performance in the banded knifefish Gymnotus carapo L'. Together they form a unique fingerprint.

Cite this