TY - JOUR
T1 - The Area of Secondary Hyperalgesia following Heat Stimulation in Healthy Male Volunteers
T2 - Inter- and Intra-Individual Variance and Reproducibility
AU - Hansen, Morten Sejer
AU - Wetterslev, Jørn
AU - Pipper, Christian Bressen
AU - Østervig, Rebecca
AU - Asghar, Mohammad Sohail
AU - Dahl, Jørgen Berg
PY - 2016/5/1
Y1 - 2016/5/1
N2 - INTRODUCTION: Clinical pain models can be applied when investigating basic physiologic pain responses in healthy volunteers. Several pain models exist; however, only few have been adequately validated. Our primary aim with this prospective study was to investigate the intra- and inter-individual variation in secondary hyperalgesia elicited by brief thermal sensitization (45°C for 3 min) in healthy volunteers.MATERIAL AND METHODS: Fifty healthy volunteers were included. Areas of secondary hyperalgesia following brief thermal sensitization were investigated by 2 observers on 4 experimental days, with a minimum interval of 7 days. Additionally, heat pain detection threshold and pain during thermal stimulation (45°C for 1 min.), and the psychological tests Pain Catastrophizing Scale and Hospital Anxiety and Depression Score were applied.RESULTS: For areas of secondary hyperalgesia, an intra-observer intra-person correlation of 0.85, 95% CI [0.78, 0.90], an intra-observer inter-person correlation of 0.03, 95% CI [0.00, 0.16], and a coefficient of variation of 0.17, 95% CI [0.14, 0.21] was demonstrated. Four percent of the study population had areas of secondary hyperalgesia both below the 1st and above the 3rd quartile considering all included participants. Heat pain detection threshold predicted area of secondary hyperalgesia with an adjusted R2 of 0.20 (P = 0.0006).CONCLUSIONS: We have demonstrated a low intra-individual, and a high inter-individual variation in thermally induced secondary hyperalgesia. We conclude that brief thermal sensitization produce secondary hyperalgesia with a high level of reproducibility, which can be applied to investigate different phenotypes related to secondary hyperalgesia in healthy volunteers.TRIAL REGISTRATION: clinicaltrials.gov NCT02166164.
AB - INTRODUCTION: Clinical pain models can be applied when investigating basic physiologic pain responses in healthy volunteers. Several pain models exist; however, only few have been adequately validated. Our primary aim with this prospective study was to investigate the intra- and inter-individual variation in secondary hyperalgesia elicited by brief thermal sensitization (45°C for 3 min) in healthy volunteers.MATERIAL AND METHODS: Fifty healthy volunteers were included. Areas of secondary hyperalgesia following brief thermal sensitization were investigated by 2 observers on 4 experimental days, with a minimum interval of 7 days. Additionally, heat pain detection threshold and pain during thermal stimulation (45°C for 1 min.), and the psychological tests Pain Catastrophizing Scale and Hospital Anxiety and Depression Score were applied.RESULTS: For areas of secondary hyperalgesia, an intra-observer intra-person correlation of 0.85, 95% CI [0.78, 0.90], an intra-observer inter-person correlation of 0.03, 95% CI [0.00, 0.16], and a coefficient of variation of 0.17, 95% CI [0.14, 0.21] was demonstrated. Four percent of the study population had areas of secondary hyperalgesia both below the 1st and above the 3rd quartile considering all included participants. Heat pain detection threshold predicted area of secondary hyperalgesia with an adjusted R2 of 0.20 (P = 0.0006).CONCLUSIONS: We have demonstrated a low intra-individual, and a high inter-individual variation in thermally induced secondary hyperalgesia. We conclude that brief thermal sensitization produce secondary hyperalgesia with a high level of reproducibility, which can be applied to investigate different phenotypes related to secondary hyperalgesia in healthy volunteers.TRIAL REGISTRATION: clinicaltrials.gov NCT02166164.
U2 - 10.1371/journal.pone.0155284
DO - 10.1371/journal.pone.0155284
M3 - Journal article
C2 - 27167119
SN - 1932-6203
VL - 11
SP - 1
EP - 17
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 5
M1 - e0155284
ER -