Abstract
The Escherichia coli gene coding for the metabolically stable 4.5 S RNA (ffs) has been shown to be required for cell viability. Essentiality was demonstrated by examining the recombination behavior of substitution mutations of ffs generated in vitro. Substitution mutants of ffs are able to replace the chromosomal allele only in the presence of a second, intact copy of ffs. Independent evidence of essentiality and the finding that 4.5 S RNA is important for protein synthetic activity came from characterization of cells dependent on the lac operon inducer isopropyl-beta-D-thiogalactoside for ffs gene expression. Here, a strain dependent on isopropyl-beta-D-thiogalactoside for 4.5 S RNA synthesis was developed by inactivation of the chromosomal ffs allele and lysogenization by a lambda phage containing 4.5 S DNA fused to a hybrid trp-lac promoter. Withdrawal of the thiogalactoside leads to a deficiency in 4.5 S RNA, a dramatic loss in protein synthesis activity, and eventual cell death. Tagging of the chromosomal ffs region with a kanamycin-resistance gene allowed mapping of the 4.5 S RNA gene. Results from this analysis place ffs near lon at approximately ten minutes on the E. coli linkage map.
Original language | English |
---|---|
Journal | Journal of Molecular Biology |
Volume | 178 |
Issue number | 3 |
Pages (from-to) | 533-50 |
Number of pages | 17 |
ISSN | 0022-2836 |
Publication status | Published - 1984 |