The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain.

Lotte Bang Pedersen, S Birkelund, A Holm, S Ostergaard, G Christiansen

6 Citations (Scopus)

Abstract

The Chlamydia trachomatis histone H1-like protein (Hc1) is a DNA-binding protein specific for the metabolically inactive chlamydial developmental form, the elementary body. Hc1 induces DNA condensation in Escherichia coli and is a strong inhibitor of transcription and translation. These effects may, in part, be due to Hc1-mediated alterations of DNA topology. To locate putative functional domains within Hc1, polypeptides Hc1(2-57) and Hc1(53-125), corresponding to the N- and C-terminal parts of Hc1, respectively, were generated. By chemical cross-linking with ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester), purified recombinant Hc1 was found to form dimers. The dimerization site was located in the N-terminal part of Hc1 (Hc1(2-57)). Moreover, circular dichroism measurements indicated an overall alpha-helical structure of this region. By using limited proteolysis, Southwestern blotting, and gel retardation assays, Hc1(53-125) was shown to contain a domain capable of binding both DNA and RNA. Under the same conditions, Hc1(2-57) had no nucleic acid-binding activity. Electron microscopy of Hc1-DNA and Hc1(53-125)-DNA complexes revealed differences suggesting that the N-terminal part of Hc1 may affect the DNA-binding properties of Hc1.
Udgivelsesdato: 1996-Feb
Original languageEnglish
JournalJournal of Bacteriology
Volume178
Issue number4
Pages (from-to)994-1002
Number of pages8
ISSN0021-9193
Publication statusPublished - 1996

Cite this