TY - JOUR
T1 - Temporally dissociable effects of ketamine on neuronal discharge and gamma oscillations in rat thalamo-cortical networks
AU - Amat-Foraster, Maria
AU - Jensen, Anders A.
AU - Plath, Niels
AU - Herrik, Kjartan F
AU - Celada, Pau
AU - Artigas, Francesc
PY - 2018/7/15
Y1 - 2018/7/15
N2 - Background: Sub-anesthetic doses of the non-competitive N-methyl-D-aspartate receptor (NMDA-R) antagonist ketamine evoke transient psychotomimetic effects, followed by persistent antidepressant effects in treatment-resistant depressed patients and rodents through still poorly understood mechanisms. Since phencyclidine (PCP) disinhibits thalamo-cortical networks by blocking NMDA-Rs on GABAergic neurons of the reticular thalamic nucleus (RtN), we examined ketamine's actions in the same areas. Methods: Single units and local field potentials were recorded in chloral hydrate anesthetized male Wistar rats. The effects of cumulative ketamine doses (0.25–5 mg/kg, i.v.) on neuronal discharge and oscillatory activity were examined in RtN, mediodorsal and centromedial (MD/CM) thalamic nuclei, and layer VI of the medial prefrontal cortex (mPFC). Results: Ketamine (1, 2 and 5 mg/kg, i.v.) significantly decreased the discharge of MD/CM, RtN and layer VI mPFC pyramidal neurons. Simultaneously, ketamine decreased the power of low frequency oscillations in all areas examined and increased gamma oscillations in mPFC and MD/CM. Lower ketamine doses (0.25 and 0.5 mg/kg, i.v.) were ineffective. Conclusions: As observed for PCP, ketamine markedly inhibited the activity of RtN neurons. However, unlike PCP, this effect did not translate into a disinhibition of MD/CM and mPFC excitatory neurons, possibly due to a more potent and simultaneous blockade of NMDA-Rs by ketamine in MD/CM and mPFC neurons. Hence, the present in vivo results show that ketamine evokes an early transient inhibition of neuronal discharge in thalamo-cortical networks, following its rapid pharmacokinetics, which is likely associated to its psychotomimetic effects. The prolonged increase in gamma oscillations may underlie its antidepressant action.
AB - Background: Sub-anesthetic doses of the non-competitive N-methyl-D-aspartate receptor (NMDA-R) antagonist ketamine evoke transient psychotomimetic effects, followed by persistent antidepressant effects in treatment-resistant depressed patients and rodents through still poorly understood mechanisms. Since phencyclidine (PCP) disinhibits thalamo-cortical networks by blocking NMDA-Rs on GABAergic neurons of the reticular thalamic nucleus (RtN), we examined ketamine's actions in the same areas. Methods: Single units and local field potentials were recorded in chloral hydrate anesthetized male Wistar rats. The effects of cumulative ketamine doses (0.25–5 mg/kg, i.v.) on neuronal discharge and oscillatory activity were examined in RtN, mediodorsal and centromedial (MD/CM) thalamic nuclei, and layer VI of the medial prefrontal cortex (mPFC). Results: Ketamine (1, 2 and 5 mg/kg, i.v.) significantly decreased the discharge of MD/CM, RtN and layer VI mPFC pyramidal neurons. Simultaneously, ketamine decreased the power of low frequency oscillations in all areas examined and increased gamma oscillations in mPFC and MD/CM. Lower ketamine doses (0.25 and 0.5 mg/kg, i.v.) were ineffective. Conclusions: As observed for PCP, ketamine markedly inhibited the activity of RtN neurons. However, unlike PCP, this effect did not translate into a disinhibition of MD/CM and mPFC excitatory neurons, possibly due to a more potent and simultaneous blockade of NMDA-Rs by ketamine in MD/CM and mPFC neurons. Hence, the present in vivo results show that ketamine evokes an early transient inhibition of neuronal discharge in thalamo-cortical networks, following its rapid pharmacokinetics, which is likely associated to its psychotomimetic effects. The prolonged increase in gamma oscillations may underlie its antidepressant action.
U2 - 10.1016/j.neuropharm.2018.04.022
DO - 10.1016/j.neuropharm.2018.04.022
M3 - Journal article
C2 - 29702122
SN - 0028-3908
VL - 137
SP - 13
EP - 23
JO - Neuropharmacology
JF - Neuropharmacology
ER -