Technical Design Report for the Upgrade of the ALICE Inner Tracking System

B. Abelev, J. Adam, D. Adamová, A Aggarwal, Ian Bearden, Hans Bøggild, Christian Holm Christensen, Kristjan Herlache Gulbrandsen, Jens Jørgen Gaardhøje, Børge Svane Nielsen, Alexander Colliander Hansen, Ante Bilandzic, Marek Chojnacki, Valentina Zaccolo

147 Citations (Scopus)

Abstract

ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.

Original languageEnglish
Article number087002
JournalJournal of Physics G: Nuclear and Particle Physics
Volume41
Issue number8
ISSN0954-3899
DOIs
Publication statusPublished - 1 Aug 2014

Fingerprint

Dive into the research topics of 'Technical Design Report for the Upgrade of the ALICE Inner Tracking System'. Together they form a unique fingerprint.

Cite this