TY - JOUR
T1 - Synchronization of lower limb motor unit activity during walking in human subjects
AU - Hansen, Naja L
AU - Hansen, S
AU - Christensen, L. O. D.
AU - Petersen, Nicolas Caesar
AU - Nielsen, Jens Bo
N1 - CURIS 2007 5200 220
PY - 2001
Y1 - 2001
N2 - Synchronization of motor unit activity was investigated during treadmill walking (speed: 3-4 km/h) in 25 healthy human subjects. Recordings were made by pairs of wire electrodes inserted into the tibialis anterior (TA) muscle and by pairs of surface electrodes placed over this muscle and a number of other lower limb muscles (soleus, gastrocnemius lateralis, gastrocnemius medialis, biceps femoris, vastus lateralis, and vastus medialis). Short-lasting synchronization (average duration: 9.6 +/- 1.1 ms) was observed between spike trains generated from multiunit electromyographic (EMG) signals recorded by the wire electrodes in TA in eight of nine subjects. Synchronization with a slightly longer duration (12.8 +/- 1.2 ms) was also found in 13 of 14 subjects for paired TA surface EMG recordings. The duration and size of this synchronization was within the same range as that observed during tonic dorsiflexion in sitting subjects. There was no relationship between the amount of synchronization and the speed of walking. Synchronization was also observed for pairs of surface EMG recordings from different ankle plantarflexors (soleus, medial gastrocnemius, and lateral gastrocnemius) and knee extensors (vastus lateralis and medialis of quadriceps), but not or rarely for paired recordings from ankle and knee muscles. The data demonstrate that human motor units within a muscle as well as synergistic muscles acting on the same joint receive a common synaptic drive during human gait. It is speculated that the common drive responsible for the motor unit synchronization during gait may be similar to that responsible for short-term synchronization during tonic voluntary contraction.
AB - Synchronization of motor unit activity was investigated during treadmill walking (speed: 3-4 km/h) in 25 healthy human subjects. Recordings were made by pairs of wire electrodes inserted into the tibialis anterior (TA) muscle and by pairs of surface electrodes placed over this muscle and a number of other lower limb muscles (soleus, gastrocnemius lateralis, gastrocnemius medialis, biceps femoris, vastus lateralis, and vastus medialis). Short-lasting synchronization (average duration: 9.6 +/- 1.1 ms) was observed between spike trains generated from multiunit electromyographic (EMG) signals recorded by the wire electrodes in TA in eight of nine subjects. Synchronization with a slightly longer duration (12.8 +/- 1.2 ms) was also found in 13 of 14 subjects for paired TA surface EMG recordings. The duration and size of this synchronization was within the same range as that observed during tonic dorsiflexion in sitting subjects. There was no relationship between the amount of synchronization and the speed of walking. Synchronization was also observed for pairs of surface EMG recordings from different ankle plantarflexors (soleus, medial gastrocnemius, and lateral gastrocnemius) and knee extensors (vastus lateralis and medialis of quadriceps), but not or rarely for paired recordings from ankle and knee muscles. The data demonstrate that human motor units within a muscle as well as synergistic muscles acting on the same joint receive a common synaptic drive during human gait. It is speculated that the common drive responsible for the motor unit synchronization during gait may be similar to that responsible for short-term synchronization during tonic voluntary contraction.
M3 - Journal article
C2 - 11535675
SN - 0022-3077
VL - 86
SP - 1266
EP - 1276
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 3
ER -