Supersaturation of calcium citrate as a mechanism behind enhanced availability of calcium phosphates by presence of citrate

André Castilho Garcia, Martina Vavrusova Hedegaard, Leif Horsfelt Skibsted

    12 Citations (Scopus)

    Abstract

    Dissolution of amorphous calcium phosphate (ACP) in aqueous citrate at varying pH has been studied with perspective of increasing availability of calcium from sidestreams of whey protein, lactose and/or cheese production or on development of new functional foods. ACP formed as an initial precipitate in 0.10 mol L−1 equimolar aqueous calcium chloride, sodium citrate, and sodium hydrogenphosphate was used as model for mineral residues formed during milk processing. Upon acidification of the ACP suspension by hydrochloric acid decreasing pH from 6.5 to 4.5, the transformations of ACP occurred through an 8 h period of supersaturation prior to a slow precipitation of calcium citrate tetrahydrate. This robust supersaturation, which may explain increased availability of calcium phosphates in presence of citrate, presented a degree of supersaturation of 7.1 and was characterized by precipitation rates for 0.10 mol L−1 equimolar aqueous calcium chloride, sodium hydrogencitrate, and sodium hydrogenphosphate with pH 5.5, and for 0.10 mol L−1 equimolar aqueous calcium chloride, sodium hydrogencitrate, and sodium dihydrogenphosphate with pH 4.1, with a degree of supersaturation of 2.7. The crystallization processes were similar according to Avrami's model with a half-life for precipitation of approximately 5 h independent of the degree of supersaturation. Ion speciation based on measurement of pH, and total concentrations of calcium, phosphate and citrate, and of conductivity and calcium ion activity during precipitation indicates a low driving force for precipitation with calcium citrate complex dominating at pH 5.5 and calcium hydrogencitrate complex dominating at pH 4.1. Calcium hydrogencitrate is suggested to be the species involved in the crystal growth followed by solid state transformation to calcium citrate tetrahydrate.

    Original languageEnglish
    JournalFood Research International
    Volume107
    Pages (from-to)195-205
    Number of pages11
    ISSN0963-9969
    DOIs
    Publication statusPublished - May 2018

    Fingerprint

    Dive into the research topics of 'Supersaturation of calcium citrate as a mechanism behind enhanced availability of calcium phosphates by presence of citrate'. Together they form a unique fingerprint.

    Cite this