Subacute cardiac rubidium-82 positron emission tomography (82Rb-PET) to assess myocardial area at risk, final infarct size, and myocardial salvage after STEMI

Adam Ali Ghotbi, Andreas Kjaer, Lars Nepper-Christensen, Kiril Aleksov Ahtarovski, Jacob Thomsen Lønborg, Niels Vejlstrup, Kasper Kyhl, Thomas Emil Christensen, Thomas Engstrøm, Henning Kelbæk, Lene Holmvang, Lia E Bang, Rasmus Sejersten Ripa, Philip Hasbak

3 Citations (Scopus)
37 Downloads (Pure)

Abstract

BACKGROUND: Determining infarct size and myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI) is important when assessing the efficacy of new reperfusion strategies. We investigated whether rest (82)Rb-PET myocardial perfusion imaging can estimate area at risk, final infarct size, and myocardial salvage index when compared to cardiac SPECT and magnetic resonance (CMR).

METHODS: Twelve STEMI patients were injected with (99m)Tc-Sestamibi intravenously immediate prior to reperfusion. SPECT, (82)Rb-PET, and CMR imaging were performed post-reperfusion and at a 3-month follow-up. An automated algorithm determined area at risk, final infarct size, and hence myocardial salvage index.

RESULTS: SPECT, CMR, and PET were performed 2.2 ± 0.5, 34 ± 8.5, and 32 ± 24.4 h after reperfusion, respectively. Mean (± SD) area at risk were 35.2 ± 16.6%, 34.7 ± 11.3%, and 28.1 ± 16.1% of the left ventricle (LV) in SPECT, CMR, and PET, respectively, P = 0.04 for difference. Mean final infarct size estimates were 12.3 ± 15.4%, 13.7 ± 10.4%, and 11.9 ± 14.6% of the LV in SPECT, CMR, and PET imaging, respectively, P = .72. Myocardial salvage indices were 0.64 ± 0.33 (SPECT), 0.65 ± 0.20 (CMR), and 0.63 ± 0.28 (PET), (P = .78).

CONCLUSIONS: (82)Rb-PET underestimates area at risk in patients with STEMI when compared to SPECT and CMR. However, our findings suggest that PET imaging seems feasible when assessing the clinical important parameters of final infarct size and myocardial salvage index, although with great variability, in a selected STEMI population with large infarcts. These findings should be confirmed in a larger population.

Original languageEnglish
JournalJournal of Nuclear Cardiology
Volume25
Issue number3
Pages (from-to)970–981
ISSN1071-3581
DOIs
Publication statusPublished - 1 Jun 2018

Fingerprint

Dive into the research topics of 'Subacute cardiac rubidium-82 positron emission tomography (82Rb-PET) to assess myocardial area at risk, final infarct size, and myocardial salvage after STEMI'. Together they form a unique fingerprint.

Cite this