Abstract
The focus of this article is on progress in establishing structure-function relationships through site-directed mutagenesis and direct binding assay of Tl+, Rb+, K+, Na+, Mg2+ or free ATP at equilibrium in Na,K-ATPase. Direct binding may identify residues coordinating cations in the E2[2K] or E1P[3Na] forms of the ping-pong reaction sequence and allow estimates of their contributions to the change of Gibbs free energy of binding. This is required to understand the molecular basis for the pronounced Na/K selectivity at the cytoplasmic and extracellular surfaces. Intramembrane Glu327 in transmembrane segment M4, Glu779 in M5, Asp804 and Asp808 in M6 are essential for tight binding of K+ and Na+. Asn324 and Glu327 in M4, Thr774, Asn776, and Glu779 in 771-YTLTSNIPEITP of M5 contribute to Na+/K+ selectivity. Free ATP binding identifies Arg544 as essential for high affinity binding of ATP or ADP. In the 708-TGDGVND segment, mutations of Asp710 or Asn713 do not interfere with free ATP binding. Asp710 is essential and Asn713 is important for coordination of Mg2+ in the E1P[3Na] complex, but they do not contribute to Mg2+ binding in the E2P-ouabain complex. Transition to the E2P form involves a shift of Mg2+ coordination away from Asp710 and Asn713 and the two residues become more important for hydrolysis of the acyl phosphate bond at Asp369.
Original language | English |
---|---|
Journal | Biochimica et Biophysica Acta - Bioenergetics |
Volume | 1505 |
Issue number | 1 |
Pages (from-to) | 57-74 |
Number of pages | 18 |
ISSN | 0005-2728 |
DOIs | |
Publication status | Published - 1 May 2001 |
Keywords
- ATP binding
- Cation binding site
- Energy transduction
- K binding
- Mg binding
- Mutagenesis
- Na,K-ATPase
- Na binding
- Tl binding