TY - JOUR
T1 - Structure and optics of the eyes of the box jellyfish Chiropsella bronzie
AU - O’Connor, Megan
AU - Garm, Anders Lydik
AU - Nilsson, Dan-E.
N1 - Keywords Box jellyfish - Visual systems - Photoreceptors - Eyes - Visual optics
PY - 2009
Y1 - 2009
N2 - Cubomedusae have a total of 24 eyes of four morphologically different types. Two of these eye types are camera-type eyes (upper and lower lens-eye), while the other two eye types are simpler pigment pit eyes (pit and slit eye). Here, we give a description of the visual system of the box jellyfish species Chiropsella bronzie and the optics of the lens eyes in this species. One aim of this study is to distinguish between general cubozoan features and species-specific features in the layout and optics of the eyes. We find that both types of lens eyes are more severely under-focused in C. bronzie than those in the previously investigated species Tripedalia cystophora. In the lower lens-eye of C. bronzie, blur circles subtend 20 and 52° for closed and open pupil, respectively, effectively removing all but the coarsest structures of the image. Histology reveals that the retina of the lower lens-eye, in addition to pigmented photoreceptors, also contains long pigment-cells, with both dark and white pigment, where the dark pigment migrates on light/dark adaptation. Unlike the upper lens-eye lens of T.cystophora, the same eye in C.bronzie did not display any significant optical power.
AB - Cubomedusae have a total of 24 eyes of four morphologically different types. Two of these eye types are camera-type eyes (upper and lower lens-eye), while the other two eye types are simpler pigment pit eyes (pit and slit eye). Here, we give a description of the visual system of the box jellyfish species Chiropsella bronzie and the optics of the lens eyes in this species. One aim of this study is to distinguish between general cubozoan features and species-specific features in the layout and optics of the eyes. We find that both types of lens eyes are more severely under-focused in C. bronzie than those in the previously investigated species Tripedalia cystophora. In the lower lens-eye of C. bronzie, blur circles subtend 20 and 52° for closed and open pupil, respectively, effectively removing all but the coarsest structures of the image. Histology reveals that the retina of the lower lens-eye, in addition to pigmented photoreceptors, also contains long pigment-cells, with both dark and white pigment, where the dark pigment migrates on light/dark adaptation. Unlike the upper lens-eye lens of T.cystophora, the same eye in C.bronzie did not display any significant optical power.
U2 - 10.1007/s00359-009-0431-x
DO - 10.1007/s00359-009-0431-x
M3 - Journal article
C2 - 19347342
SN - 0340-7594
VL - 195
SP - 557
EP - 569
JO - Journal of Comparative Physiology A. Sensory, neural, and behavioral physiology
JF - Journal of Comparative Physiology A. Sensory, neural, and behavioral physiology
IS - 6
ER -