TY - JOUR
T1 - Structure-activity-relationship study of N-acyl-N-phenylpiperazines as potential inhibitors of the excitatory amino acid transporters (EAATs): Improving the potency of a micromolar screening hit is not truism
AU - Huynh, Tri Hien Viet
AU - Demmer, Charles Sylvain
AU - Abrahamsen, Bjarke
AU - Märcher-Rørsted, Emil
AU - Frykman, M
AU - Jensen, Anders A.
AU - Bunch, Lennart
PY - 2013
Y1 - 2013
N2 - The excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate from the synaptic cleft. To date, five subtypes EAAT1-5 have been identified for which selective inhibitors have been discovered for EAAT1 and EAAT2. By screening of a commercially available compound library consisting of 4,000 compounds, N-acyl-N-phenylpiperazine analog (±)-exo-1 was identified to be a non-selective inhibitor at EAAT1-3 displaying IC50 values in the mid-micromolar range (10 μM, 40 μM and 30 μM at EAAT1, 2 and 3, respectively). Subsequently, we designed and synthesized a series of analogs to explore the structure-activityrelationship of this scaffold in the search for analogs characterized by increased inhibitory potency and/or EAAT subtype selectivity. Despite extensive efforts, all analogs of (±)-exo-1 proved to be either inactive or to have least 3-fold lower inhibitory potency than the lead, and furthermore none of the active analogs displayed selectivity for a particular subtype amongst the EAAT1-3. On the basis of our findings, we speculate that (±)-exo-1 binds to a recess (deepening) on the EAAT proteins than a well-defined pocket.
AB - The excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate from the synaptic cleft. To date, five subtypes EAAT1-5 have been identified for which selective inhibitors have been discovered for EAAT1 and EAAT2. By screening of a commercially available compound library consisting of 4,000 compounds, N-acyl-N-phenylpiperazine analog (±)-exo-1 was identified to be a non-selective inhibitor at EAAT1-3 displaying IC50 values in the mid-micromolar range (10 μM, 40 μM and 30 μM at EAAT1, 2 and 3, respectively). Subsequently, we designed and synthesized a series of analogs to explore the structure-activityrelationship of this scaffold in the search for analogs characterized by increased inhibitory potency and/or EAAT subtype selectivity. Despite extensive efforts, all analogs of (±)-exo-1 proved to be either inactive or to have least 3-fold lower inhibitory potency than the lead, and furthermore none of the active analogs displayed selectivity for a particular subtype amongst the EAAT1-3. On the basis of our findings, we speculate that (±)-exo-1 binds to a recess (deepening) on the EAAT proteins than a well-defined pocket.
U2 - 10.1186/2193-1801-2-112
DO - 10.1186/2193-1801-2-112
M3 - Journal article
SN - 2193-1801
VL - 2
SP - 112
JO - SpringerPlus
JF - SpringerPlus
ER -