Abstract
We show that the diastereomers of hydroxy peroxy radicals formed from OH and O2 addition to C2 and C3, respectively, of crotonaldehyde (CH3CHCHCHO) undergo gas-phase unimolecular aldehydic hydrogen shift (H-shift) chemistry with rate coefficients that differ by an order of magnitude. The stereospecificity observed here for crotonaldehyde is general and will lead to a significant diastereomeric-specific chemistry in the atmosphere. This enhancement of specific stereoisomers by stereoselective gas-phase reactions could have widespread implications given the ubiquity of chirality in nature. The H-shift rate coefficients calculated using multiconformer transition state theory (MC-TST) agree with those determined experimentally using stereoisomer-specific gas-chromatography chemical ionization mass spectroscopy (GC-CIMS) measurements.
Original language | English |
---|---|
Journal | Journal of Physical Chemistry Letters |
Volume | 10 |
Issue number | 20 |
Pages (from-to) | 6260-6266 |
ISSN | 1948-7185 |
DOIs | |
Publication status | Published - 17 Oct 2019 |