Speedy local search for semi-supervised regularized least-squares

Fabian Gieseke*, Oliver Kramer, Antti Airola, Tapio Pahikkala

*Corresponding author for this work
1 Citation (Scopus)

Abstract

In real-world machine learning scenarios, labeled data is often rare while unlabeled data can be obtained easily. Semi-supervised approaches aim at improving the prediction performance by taking both the labeled as well as the unlabeled part of the data into account. In particular, semi-supervised support vector machines favor decision hyperplanes which lie in a "low-density area" induced by the unlabeled patterns (while still considering the labeled part of the data). The associated optimization problem, however, is of combinatorial nature and, hence, difficult to solve. In this work, we present an efficient implementation of a simple local search strategy that is based on matrix updates of the intermediate candidate solutions. Our experiments on both artificial and real-world data sets indicate that the approach can successfully incorporate unlabeled data in an efficient manner.

Original languageEnglish
Title of host publicationKI 2011: Advances in Artificial Intelligence : - 34th Annual German Conference on AI, Proceedings
EditorsJoscha Bach, Stefan Edelkamp
Number of pages12
Publication date2011
Pages87-98
ISBN (Print)978-3-642-24454-4
ISBN (Electronic)978-3-642-24455-1
DOIs
Publication statusPublished - 2011
Externally publishedYes
Event34th Annual German Conference on Artificial Intelligence, KI 2011, in Co-location with the 41st Annual Meeting of the Gesellschaft fur Informatik, INFORMATIK 2011 and the 9th German Conference on Multi-Agent System Technologies, MATES 2011 - Berlin, Germany
Duration: 4 Oct 20117 Oct 2011

Conference

Conference34th Annual German Conference on Artificial Intelligence, KI 2011, in Co-location with the 41st Annual Meeting of the Gesellschaft fur Informatik, INFORMATIK 2011 and the 9th German Conference on Multi-Agent System Technologies, MATES 2011
Country/TerritoryGermany
CityBerlin
Period04/10/201107/10/2011
SeriesLecture notes in computer science
Volume7006
ISSN0302-9743

Fingerprint

Dive into the research topics of 'Speedy local search for semi-supervised regularized least-squares'. Together they form a unique fingerprint.

Cite this