Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine

Elisabeth Lenz, Katrine Birgitte Tarp Jensen, Lasse Ingerslev Blaabjerg, Klaus Knop, Holger Grohganz, Korbinian Löbmann, Thomas Rades, Peter Kleinebudde

    46 Citations (Scopus)

    Abstract

    Co-amorphous drug formulations provide the possibility to stabilize a drug in its amorphous form by interactions with low molecular weight compounds, e.g. amino acids. Recent studies have shown the feasibility of spray drying as a technique to manufacture co-amorphous indomethacin–arginine in a larger production scale. In this work, a tablet formulation was developed for a co-amorphous salt, namely spray dried indomethacin–arginine (SD IND–ARG). The effects of compaction pressure on tablet properties, physical stability and dissolution profiles under non-sink conditions were examined. Dissolution profiles of tablets with SD IND–ARG (TAB SD IND–ARG) were compared to those of tablets containing a physical mixture of crystalline IND and ARG (TAB PM IND–ARG) and to the dissolution of pure spray dried powder.

    Concerning tableting, the developed formulation allowed for the preparation of tablets with a broad range of compaction pressures resulting in different porosities and tensile strengths. XRPD results showed that, overall, no crystallization occurred neither during tableting nor during long-term storage. Dissolution profiles of TAB SD IND–ARG showed an immediate release of IND by erosion. The solubility of crystalline IND was exceeded by a factor of about 4, which was accompanied by a slow crystallization. For TAB PM IND–ARG, an in situ amorphization of IND in the presence of ARG was observed. As a result, a supersaturation was obtained, too, followed by a faster crystallization compared to TAB SD IND–ARG. In conclusion, the AUC24h of TAB SD IND–ARG was twofold higher than the AUC24h of TAB PM IND–ARG. Interestingly, different plateaus were obtained for TAB SD IND–ARG, TAB PM IND–ARG and pure SD IND–ARG after 24 h dissolution, which could be explained by the formation of different polymorphic forms of indomethacin.

    Original languageEnglish
    JournalEuropean journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
    Volume96
    Pages (from-to)44–52
    Number of pages9
    ISSN0939-6411
    DOIs
    Publication statusPublished - 25 Jul 2015

    Fingerprint

    Dive into the research topics of 'Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine'. Together they form a unique fingerprint.

    Cite this