TY - JOUR
T1 - Soil nitrogen explanatory factors across a range of forest ecosystems and climatic conditions in Italy
AU - Rodeghiero, Mirco
AU - Vesterdal, Lars
AU - Marcolla, Barbara
AU - Vescovo, Loris
AU - Aertsen, Wim
AU - Martinez, Cristina
AU - Di Cosmo, Lucio
AU - Gasparini, Patrizia
AU - Gianelle, Damiano
PY - 2018/1/15
Y1 - 2018/1/15
N2 - N is known to be the most limiting element for vegetation growth in temperate and boreal forests. The expected increases in global temperature are predicted to accelerate N mineralization, therefore incrementing N availability in the soil and affecting the soil C cycle as well. While there is an abundance of C data collected to fulfill the requirements for national GHG accounting, more limited information is available for soil N accumulation and storage in relation to forest categories and altitudinal gradients. The data collected by the second Italian National Forest Inventory, spanning a wide range of temperature and precipitation values (10° latitudinal range), represented a unique opportunity to calculate N content and C/N ratio of the different soil layers to a depth of 30 cm. Boosted Regression Tree (BRT) models were applied to investigate the main determinants of soil N distribution and C/N ratio. Forest category was shown to be the main explanatory factor of soil N variability in seven out of eight models, both for forest floor and mineral soil layers. Moreover latitude explained a larger share of variability than single climate variables. BRT models explained, on average, the 49% of the data variability, with the remaining fraction likely due to soil-related variables that were unaccounted for. Accurate estimations of N pools and their determinants in a climate change perspective are consequently required to predict the potential impact of their degradation on forest soil N pools.
AB - N is known to be the most limiting element for vegetation growth in temperate and boreal forests. The expected increases in global temperature are predicted to accelerate N mineralization, therefore incrementing N availability in the soil and affecting the soil C cycle as well. While there is an abundance of C data collected to fulfill the requirements for national GHG accounting, more limited information is available for soil N accumulation and storage in relation to forest categories and altitudinal gradients. The data collected by the second Italian National Forest Inventory, spanning a wide range of temperature and precipitation values (10° latitudinal range), represented a unique opportunity to calculate N content and C/N ratio of the different soil layers to a depth of 30 cm. Boosted Regression Tree (BRT) models were applied to investigate the main determinants of soil N distribution and C/N ratio. Forest category was shown to be the main explanatory factor of soil N variability in seven out of eight models, both for forest floor and mineral soil layers. Moreover latitude explained a larger share of variability than single climate variables. BRT models explained, on average, the 49% of the data variability, with the remaining fraction likely due to soil-related variables that were unaccounted for. Accurate estimations of N pools and their determinants in a climate change perspective are consequently required to predict the potential impact of their degradation on forest soil N pools.
U2 - 10.1016/j.foreco.2017.10.039
DO - 10.1016/j.foreco.2017.10.039
M3 - Journal article
SN - 0378-1127
VL - 408
SP - 25
EP - 35
JO - Forest Ecology and Management
JF - Forest Ecology and Management
ER -