Abstract
We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN 2017gmr from hours after discovery through the first 180 days. SN 2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ∼500 R o progenitor radius, consistent with a rather compact red supergiant, and late-time luminosities indicate that up to 0.130 ± 0.026 M o of 56Ni are present, if the light curve is solely powered by radioactive decay, although the 56Ni mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of Hα and [O i] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta.
Original language | English |
---|---|
Article number | 43 |
Journal | Astrophysical Journal |
Volume | 885 |
Issue number | 1 |
Number of pages | 23 |
ISSN | 0004-637X |
DOIs | |
Publication status | Published - 1 Nov 2019 |
Keywords
- Type II supernovae
- Core-collapse supernovae
- Massive stars