Abstract
EF-hand calcium sensors respond structurally to changes in intracellular Ca2+ concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors is still elusive. We used single-molecule optical tweezers to study the folding mechanism of the human neuronal calcium sensor 1 (NCS1). Two intermediate structures induced by Ca2+ binding to the EF-hands were observed during refolding. The complete folding of the C domain is obligatory for the folding of the N domain, showing striking interdomain dependence. Molecular dynamics results reveal the atomistic details of the unfolding process and rationalize the different domain stabilities during mechanical unfolding. Through constant-force experiments and hidden Markov model analysis, the free energy landscape of the protein was reconstructed. Our results emphasize that NCS1 has evolved a remarkable complex interdomain cooperativity and a fundamentally different folding mechanism compared to structurally related proteins.
Original language | English |
---|---|
Journal | Structure |
Volume | 21 |
Issue number | 10 |
Pages (from-to) | 1812-1821 |
Number of pages | 10 |
ISSN | 0969-2126 |
DOIs | |
Publication status | Published - 8 Oct 2013 |