TY - JOUR
T1 - Sinemurian–Pliensbachian calcareous nannofossil biostratigraphy and organic carbon isotope stratigraphy in the Paris Basin
T2 - calibration to the ammonite biozonation of NW Europe
AU - Peti, Leonie
AU - Thibault, Nicolas Rudolph
AU - Clemence, Marie-Emilie
AU - Korte, Christoph
AU - Dommergues, Jean Louis
AU - Bougeault, Cédric
AU - Pellenard, Pierre
AU - Jelby, Mads Engholm
AU - Ullmann, Clemens V.
PY - 2017
Y1 - 2017
N2 - The biostratigraphy of Sinemurian to lower Toarcian calcareous nannofossils has been investigated in the Sancerre-Couy core (Paris Basin), which contains a mixed assemblage of species with affinities to the northern and southern areas of the peri-tethyan realm, thus allowing for the use and calibration of the Mediterranean Province (Italy/S France) and NW Europe (UK) biozonation schemes. This study is based on semi-quantitative analyses of the calcareous nannofossil assemblage performed on 145 samples and the recorded bioevents are calibrated to the NW European Ammonite Zonation and to a new organic carbon isotope curve based on 385 data points. The main bioevents, i.e. the first occurrences of Parhabdolithus liasicus, Crepidolithus pliensbachensis, Crepidolithus crassus, Mitrolithus lenticularis, Similiscutum cruciulus sensu lato, Lotharingius hauffii, Crepidolithus cavus and Lotharingius sigillatus as well as the last occurrence of Parhabdolithus robustus, have been identified. However, we show that a large number of standard biostratigraphic markers show inconsistent occurrences at the base and top of their range, possibly accounting for some of the significant discrepancies observed between the different domains. In addition to the nine main bioevents used for the biozonation of the core, we document an additional 50 distinct bioevents, evaluate their reliability and discuss their potential significance by comparison to previous studies. A total of five significant negative organic carbon isotope excursions are identified and defined in the Paris Basin including the well-documented Sinemurian–Pliensbachian boundary event. One positive excursion is further defined in the Pliensbachian interval. Our calibration of high-resolution calcareous nannofossil biostratigraphy to ammonite biostratigraphy and organic carbon isotopes represents a new stratigraphic reference for the Lower Jurassic series.
AB - The biostratigraphy of Sinemurian to lower Toarcian calcareous nannofossils has been investigated in the Sancerre-Couy core (Paris Basin), which contains a mixed assemblage of species with affinities to the northern and southern areas of the peri-tethyan realm, thus allowing for the use and calibration of the Mediterranean Province (Italy/S France) and NW Europe (UK) biozonation schemes. This study is based on semi-quantitative analyses of the calcareous nannofossil assemblage performed on 145 samples and the recorded bioevents are calibrated to the NW European Ammonite Zonation and to a new organic carbon isotope curve based on 385 data points. The main bioevents, i.e. the first occurrences of Parhabdolithus liasicus, Crepidolithus pliensbachensis, Crepidolithus crassus, Mitrolithus lenticularis, Similiscutum cruciulus sensu lato, Lotharingius hauffii, Crepidolithus cavus and Lotharingius sigillatus as well as the last occurrence of Parhabdolithus robustus, have been identified. However, we show that a large number of standard biostratigraphic markers show inconsistent occurrences at the base and top of their range, possibly accounting for some of the significant discrepancies observed between the different domains. In addition to the nine main bioevents used for the biozonation of the core, we document an additional 50 distinct bioevents, evaluate their reliability and discuss their potential significance by comparison to previous studies. A total of five significant negative organic carbon isotope excursions are identified and defined in the Paris Basin including the well-documented Sinemurian–Pliensbachian boundary event. One positive excursion is further defined in the Pliensbachian interval. Our calibration of high-resolution calcareous nannofossil biostratigraphy to ammonite biostratigraphy and organic carbon isotopes represents a new stratigraphic reference for the Lower Jurassic series.
KW - Coccoliths
KW - Lower Jurassic
KW - Sancerre-Couy
KW - Semi-quantitative biostratigraphy
U2 - 10.1016/j.palaeo.2016.12.004
DO - 10.1016/j.palaeo.2016.12.004
M3 - Journal article
AN - SCOPUS:85006516225
SN - 0031-0182
VL - 468
SP - 142
EP - 161
JO - Palaeogeography, Palaeoclimatology, Palaeoecology - An International Journal for the Geo-Sciences
JF - Palaeogeography, Palaeoclimatology, Palaeoecology - An International Journal for the Geo-Sciences
ER -