Simulation of transmission and persistence of African swine fever in wild boar in Denmark

Tariq Halasa, Anette Boklund, Anette Bøtner, Sten Mortensen, Lene Jung Kjær

    6 Citations (Scopus)

    Abstract

    African swine fever (ASF) is caused by ASF virus (ASFV) and is currently circulating in the eastern part of Europe posing a serious risk regarding transmission to western European countries. Wild boar is a main driver of the transmission and persistence of ASFV in the endemic infected countries in Europe. Some European countries free from ASF, such as Denmark and the Netherlands, have limited population sizes of wild boar, but have large swine productions. In these countries, the patterns of transmission and persistence of ASFV in the existing wild boar population, in case of introduction of ASFV, are unknown. It is important to get a better understanding of ASFV in these wild boar populations, in order to better manage the existing wild boar population and thereby minimize the risk of virus introduction and transmission to domestic pigs, in case of an ASFV incursion. We created an agent-based spatio-temporal model and simulated the transmission of ASFV within Danish wild boar populations, using actual landscape data. The model was run with 50 and 100 wild boar groups used as initial population sizes, respectively, either distributed across the southern part of the mainland (Jutland) or across both the southern and middle parts of Jutland, where wild boar groups are believed to exist. At first, the model was run without ASFV for 25 years to assess wild boar population dynamics in both regions. Thereafter, ASFV was added to the model 1 year after initiation and run for up to another 4 years. The model predicted that wild boar populations may increase drastically over the next 25 years, if wild boar groups were distributed across both southern and middle Jutland and no mitigation actions were taken, while the population sizes will be restricted, if groups were distributed only across the southern part of Jutland. The density of the population is an important factor affecting the transmission and persistency of the disease. Model results indicated that ASF epidemics in the simulated populations would generally persist for few months. However, due to the high stochasticity of the process, in certain situations the epidemics may last for more than one year, posing a serious risk of ASFV introduction to domestic pigs.
    Original languageEnglish
    JournalPreventive Veterinary Medicine
    Volume167
    Pages (from-to)68 - 79
    ISSN0167-5877
    DOIs
    Publication statusPublished - 1 Jun 2019

    Fingerprint

    Dive into the research topics of 'Simulation of transmission and persistence of African swine fever in wild boar in Denmark'. Together they form a unique fingerprint.

    Cite this