TY - JOUR
T1 - SIK2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes
AU - Henriksson, Emma
AU - Säll, Johanna
AU - Gormand, Amélie
AU - Wasserstrom, Sebastian
AU - Morrice, Nicholas A
AU - Fritzen, Andreas Mæchel
AU - Foretz, Marc
AU - Campbell, David G
AU - Sakamoto, Kei
AU - Ekelund, Mikael
AU - Degerman, Eva
AU - Stenkula, Karin G
AU - Göransson, Olga
N1 - CURIS 2015 NEXS 053
PY - 2015
Y1 - 2015
N2 - Salt-inducible kinase 2 (SIK2) is an AMP-activated protein kinase (AMPK) related kinase abundantly expressed in adipose tissue. Our aim was to identify molecular targets and functions of SIK2 in adipocytes, and to address the role of PKA-mediated phosphorylation of SIK2 on Ser358. Modulation of SIK2 in adipocytes resulted in altered phosphorylation of CREB-regulated transcription co-activator 2 (CRTC2), CRTC3 and class IIa histone deacetylase 4 (HDAC4). Furthermore, CRTC2, CRTC3, HDAC4 and protein phosphatase 2A (PP2A) interacted with SIK2, and the binding of CRTCs and PP2A to wild-type but not Ser358Ala SIK2, was reduced by cAMP elevation. Silencing of SIK2 resulted in reduced GLUT4 (also known as SLC2A4) protein levels, whereas cells treated with CRTC2 or HDAC4 siRNA displayed increased levels of GLUT4. Overexpression or pharmacological inhibition of SIK2 resulted in increased and decreased glucose uptake, respectively. We also describe a SIK2-CRTC2-HDAC4 pathway and its regulation in human adipocytes, strengthening the physiological relevance of our findings. Collectively, we demonstrate that SIK2 acts directly on CRTC2, CRTC3 and HDAC4, and that the cAMP-PKA pathway reduces the interaction of SIK2 with CRTCs and PP2A. Downstream, SIK2 increases GLUT4 levels and glucose uptake in adipocytes.
AB - Salt-inducible kinase 2 (SIK2) is an AMP-activated protein kinase (AMPK) related kinase abundantly expressed in adipose tissue. Our aim was to identify molecular targets and functions of SIK2 in adipocytes, and to address the role of PKA-mediated phosphorylation of SIK2 on Ser358. Modulation of SIK2 in adipocytes resulted in altered phosphorylation of CREB-regulated transcription co-activator 2 (CRTC2), CRTC3 and class IIa histone deacetylase 4 (HDAC4). Furthermore, CRTC2, CRTC3, HDAC4 and protein phosphatase 2A (PP2A) interacted with SIK2, and the binding of CRTCs and PP2A to wild-type but not Ser358Ala SIK2, was reduced by cAMP elevation. Silencing of SIK2 resulted in reduced GLUT4 (also known as SLC2A4) protein levels, whereas cells treated with CRTC2 or HDAC4 siRNA displayed increased levels of GLUT4. Overexpression or pharmacological inhibition of SIK2 resulted in increased and decreased glucose uptake, respectively. We also describe a SIK2-CRTC2-HDAC4 pathway and its regulation in human adipocytes, strengthening the physiological relevance of our findings. Collectively, we demonstrate that SIK2 acts directly on CRTC2, CRTC3 and HDAC4, and that the cAMP-PKA pathway reduces the interaction of SIK2 with CRTCs and PP2A. Downstream, SIK2 increases GLUT4 levels and glucose uptake in adipocytes.
U2 - 10.1242/jcs.153932
DO - 10.1242/jcs.153932
M3 - Journal article
C2 - 25472719
SN - 0021-9533
VL - 128
SP - 472
EP - 486
JO - Journal of Cell Science
JF - Journal of Cell Science
IS - 3
ER -