Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR

    349 Citations (Scopus)
    1572 Downloads (Pure)

    Abstract

    Background: Real-time quantitative PCR (qPCR) is a method for rapid and reliable quantification of mRNA transcription. Internal standards such as reference genes are used to normalise mRNA levels between different samples for an exact comparison of mRNA transcription level. Selection of high quality reference genes is of crucial importance for the interpretation of data generated by real-time qPCR.
    Results: In this study nine commonly used reference genes were investigated in 17 different pig tissues using real-time qPCR with SYBR green. The genes included beta-actin (ACTB), beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine phosphoribosyltransferase I (HPRT I), ribosomal protein L4 (RPL4), succinate dehydrogenase complex subunit A (SDHA), TATA box binding protein (TPB) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ). The stability of these reference genes in different pig tissues was investigated using the geNorm application. The range of expression stability in the genes analysed was (from the most stable to the least stable): ACTB/RPL4, TBP, HPRT, HMBS, YWHAZ, SDHA, B2M and GAPDH.
    Conclusion: Expression stability varies greatly between genes. ACTB, RPL4, TPB and HPRT I were found to have the highest stability across tissues. Based on both expression stability and expression level, our data suggest that ACTB and RPL4 are good reference genes for high abundant transcripts while TPB and HPRT I are good reference genes for low abundant transcripts in expression studies across different pig tissues.
    Original languageEnglish
    JournalBMC Molecular Biology
    Volume8
    Issue number67
    Number of pages6
    ISSN1471-2199
    DOIs
    Publication statusPublished - 2007

    Fingerprint

    Dive into the research topics of 'Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR'. Together they form a unique fingerprint.

    Cite this