Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes

Thi Dieu Binh Trinh, Dan Stærk, Anna K Jäger

    54 Citations (Scopus)

    Abstract

    Ethnopharmacological relevance
    The 18 plant species investigated in this study have been used as herbal antidiabetic remedies in Vietnamese traditional medicines. This study aimed to evaluate their ability to inhibit α-glucosidase and α-amylase, two key enzymes involved in serum glucose regulation.
    Materials and methods
    Chloroform, ethanol and water extracts of 18 plants were screened for α-glucosidase and α-amylase inhibitory activity. Analytical-scale HPLC was subsequently used to investigate the most active extracts, where samples with low level of tannins were identified and fractionated into 96-well microplates, followed by α-glucosidase and α-amylase assessment of each well. High-resolution α-glucosidase and α-amylase inhibition profiles constructed from these assays allowed identification of HPLC peaks correlated with α-glucosidase and α-amylase inhibitory activity. The active constituents were subsequently isolated using preparative-scale HPLC and their structure was elucidated by HR-ESIMS and NMR.
    Results
    Ethanol extracts of Nepenthes mirabilis, Phyllanthus urinaria, and Kandelia candel significantly inhibited α-glucosidase with IC50 values of 32.7±6.3, 39.7±9.7, and 35.4±13.9 μg/mL, respectively. Water extracts of N. mirabilis, Phyllanthus amarus, P. urinaria, Lagerstroemia speciosa, Syzygium cumini, Rhizophora mucronata, and K. candel showed IC50 values of 3.3±0.8, 34.9±1.5, 14.6±4.6, 5.4±0.5, 20.9±1.8, 3.3±0.6, and 4.0±0.8 μg/mL, respectively. In the α-amylase inhibition assay, ethanol extracts of K. candel and Ficus racemosa showed IC50 of 7.6±0.9 and 46.7±23.6 μg/mL, respectively. Showing low tannin constituents as seen from HPLC profiles, P. amarus and P. urinaria water extracts and F. racemosa ethanol extract were subjected to microfractionation. Only high-resolution α-glucosidase inhibition profiles of P. amarus and P. urinaria water extracts showed several active compounds, which were isolated and identified as corilagin (1), repandusinic acid A (2), and mallotinin (3). IC50 of these compounds were 1.70±0.03, 6.10±0.10, and 3.76±0.15 μM, respectively. Kinetics analysis revealed that 1 displayed a mixed type mode of inhibition with Ki and Ki′ values of 2.37±0.90 and 2.61±0.61 μM, respectively, whereas 2 and 3 competitively inhibited α-glucosidase with Ki values of 4.01±0.47 and 0.65±0.11 μM, respectively.
    Conclusion
    Corilagin (1), repandusinic acid A (2), and mallotinin (3) were potent α-glucosidase inhibitors contributing significantly to the inhibitory effect observed for the water extracts of P. amarus and P. urinaria.
    Original languageEnglish
    JournalJournal of Ethnopharmacology
    Volume186
    Pages (from-to)189-195
    Number of pages7
    ISSN0378-8741
    DOIs
    Publication statusPublished - 20 Jun 2016

    Fingerprint

    Dive into the research topics of 'Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes'. Together they form a unique fingerprint.

    Cite this