Abstract
According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.
Original language | English |
---|---|
Article number | 012409 |
Journal | Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) |
Volume | 92 |
Issue number | 1 |
ISSN | 1539-3755 |
DOIs | |
Publication status | Published - 27 Jul 2015 |